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Functional data analysis is an important research field in statistics which
treats data as random functions drawn from some infinite-dimensional func-
tional space, and functional principal component analysis (FPCA) based on
eigen-decomposition plays a central role for data reduction and representa-
tion. After nearly three decades of research, there remains a key problem
unsolved, namely, the perturbation analysis of covariance operator for diverg-
ing number of eigencomponents obtained from noisy and discretely observed
data. This is fundamental for studying models and methods based on FPCA,
while there has not been substantial progress since Hall, Müller and Wang
(2006)’s result for a fixed number of eigenfunction estimates. In this work, we
aim to establish a unified theory for this problem, obtaining upper bounds for
eigenfunctions with diverging indices in both the L2 and supremum norms,
and deriving the asymptotic distributions of eigenvalues for a wide range of
sampling schemes. Our results provide insight into the phenomenon when
the L2 bound of eigenfunction estimates with diverging indices is minimax
optimal as if the curves are fully observed, and reveal the transition of con-
vergence rates from nonparametric to parametric regimes in connection to
sparse or dense sampling. We also develop a double truncation technique to
handle the uniform convergence of estimated covariance and eigenfunctions.
The technical arguments in this work are useful for handling the perturbation
series with noisy and discretely observed functional data and can be applied
in models or those involving inverse problems based on FPCA as regulariza-
tion, such as functional linear regression.

1. Introduction. Modern data collection technologies have rapidly evolved, leading to
the widespread emergence of functional data that have been extensively studied over the past
few decades. Generally, functional data are considered stochastic processes that satisfy cer-
tain smoothness conditions or realizations of random elements valued in Hilbert space. These
two perspectives highlight the essential natures of functional data, namely, their smoothness
and infinite dimensionality, which distinguish them from high-dimensional and vector-valued
data. For a comprehensive treatment of functional data, we recommend the monographs by
Ramsay and Silverman (2006), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), and
Hsing and Eubank (2015), among others.

Although functional data provide information over a continuum, which is often time or
spatial location, in reality, data are collected or observed discretely with measurement errors.
For instance, we usually use n to denote the sample size, which is the number of subjects
corresponding to random functions, and Ni to denote the number of observations for the ith
subject. Thanks to the smooth nature of functional data, having a large number of obser-
vations per subject is more of a blessing than a curse, in contrast to high-dimensional data
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(Hall, Müller and Wang, 2006; Zhang and Wang, 2016). There is extensive literature on non-
parametric methods that address the smoothness of functional data, including kernel or local
polynomial methods (Yao, Müller and Wang, 2005a; Hall, Müller and Wang, 2006; Zhang
and Wang, 2016), and various types of spline methods (Rice and Wu, 2001; Yao and Lee,
2006; Paul and Peng, 2009; Cai and Yuan, 2011).

When employing a smoothing method, there are two typical strategies to be considered.
If the observed time points per subject are relatively dense, it is recommended to pre-smooth
each curve before further analysis, as suggested by Ramsay and Silverman (2006) and Zhang
and Chen (2007). However, if the sampling scheme is rather sparse, it is preferred to pool
observations together from all subjects (Yao, Müller and Wang, 2005a). The choice of indi-
vidual versus pooled information affects the convergence rates and phase transitions in esti-
mating population quantities, such as mean and covariance functions. When Ni ≳ O(n5/4)
and the tuning parameter is optimally chosen per subject, the estimated mean and covariance
functions based on the reconstructed curves through pre-smoothing are

√
n-consistent, the

so-called optimal parametric rate. On the other hand, by borrowing information from all sub-
jects, the pooling method only requires Ni ≳ O(n1/4) for mean and covariance estimation
to reach optimal (Cai and Yuan, 2010, 2011; Zhang and Wang, 2016), providing theoretical
insight into the advantage of the pooling strategy.

However, estimating the mean and covariance functions does not account for the infi-
nite dimensionality of functional data. Due to the non-invertibility of covariance operators
for functional random objects, regularization is required in models that involve inverse is-
sues with functional covariates, such as the functional linear model (Yao, Müller and Wang,
2005b; Hall and Horowitz, 2007; Yuan and Cai, 2010), functional generalized linear model
(Müller and Stadtmüller, 2005; Dou, Pollard and Zhou, 2012), and functional Cox model (Qu,
Wang and Wang, 2016). Truncation of the leading functional principal components (FPC) is
a well-developed approach to addressing this inverse issue (Hall and Horowitz, 2007; Dou,
Pollard and Zhou, 2012). In order to suppress the model bias, the number of principal com-
ponents used in truncation should grow slowly with sample size. As a result, the convergence
rate of the estimated eigenfunctions with diverging indices becomes a fundamental issue,
which is not only important in its own right but also crucial for most models and methods
involving functional principal components regularization.

For fully observed functional data, Hall and Horowitz (2007) obtained the optimal con-
vergence rate j2/n for the jth eigenfunction, which served as a cornerstone in establishing
the optimal convergence rate in functional linear model (Hall and Horowitz, 2007) and func-
tional generalized linear model (Dou, Pollard and Zhou, 2012). In the discretely observed
case, stochastic bounds for a fixed number of eigenfunctions have been obtained by different
methods. Using a local linear smoother, Hall, Müller and Wang (2006) showed that the L2

rate of a fixed eigenfunction for finite Ni is OP (n
−4/5). Under the reproducing kernel Hilbert

space framework, Cai and Yuan (2010) claimed that eigenfunctions with fixed indices admit
the same convergence rate as the covariance function, which is OP ((n/ logn)

−4/5). It is im-
portant to note that, although both results are one-dimensional nonparametric rates (differing
at most by a factor of (logn)4/5), the methodologies and techniques used are completely
disparate, and a detailed discussion can be found in Section 2. Additionally, Paul and Peng
(2009) proposed a reduced rank model and studied its asymptotic properties under a particu-
lar setting. In Zhou, Yao and Zhang (2023), the authors studied the convergence rate for the
functional linear model and obtained an improved bound for the eigenfunctions with diverg-
ing indices. However, this rate will not reach the optimal rate of j2/n for any sampling rate
Ni. As explained in Section 2, while some bounds can be obtained for eigenfunctions with
diverging indices, attaining an optimal bound presents a substantially greater challenge. Lack
of such an optimal bound for eigenfunctions poses considerable challenge in analyzing the
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standard and efficient plug-in estimator in functional linear model (Hall and Horowitz, 2007).
Consequently, Zhou, Yao and Zhang (2023) resorted to a complex sample-splitting strategy,
which results in lower estimation efficiency. To the best of our knowledge, there has been no
progress in obtaining the optimal convergence rate of eigenfunctions with diverging indices
when the data are discretely observed with noise contamination.

The distinction between estimating a diverging number and a fixed number of eigenfunc-
tions is rooted in the infinite-dimensional nature of functional data. Analyzing eigenfunc-
tions with diverging indices presents challenges due to the decaying eigenvalues. For fully
observed data, the cross-sectional sample covariance based on the true functions facilitates
the application of perturbation results, as shown in prior work (Hall and Horowitz, 2007;
Dou, Pollard and Zhou, 2012). This approach simplifies each term in the perturbation series
to the principal component scores. However, when the trajectories are observed at discrete
time points, this virtue no longer exists, leading to a summability issue arising from the esti-
mation bias and decaying eigenvalues. This renders existing techniques invalid and remains
an unresolved problem; see Section 2 for further elaboration.

This paper addresses this significant yet challenging task of estimating an increasing num-
ber of eigenfunctions from discretely observed functional data, and presents a unified theory.
The contributions of this paper are at least threefold. First, we establish an L2 bound for
the eigenfunctions and the asymptotic normality of the eigenvalues with increasing indices,
reflecting a transition from nonparametric to parametric regimes and encompassing a wide
range from sparse to dense sampling. We show that when Ni reaches a magnitude of n1/4+δ ,
where δ depends on the smoothness parameters of the underlying curves, the convergence
rate becomes optimal as if the curves are fully observed. Second, we introduce a novel dou-
ble truncation method that yields uniform convergence across the time domain, surmounting
theoretical barriers in the existing literature. Through this approach, uniform convergence
rates for the covariance and eigenfunctions are achieved under mild conditions across var-
ious sampling schemes. Notably, this includes the uniform convergence of eigenfunctions
with increasing indices, which is new even in scenarios where data are fully observed. Third,
we provide a new technical route for addressing the perturbation series of the functional co-
variance operator, bridging the gap between the “ideal” fully observed scenario and the noisy,
discrete “real-world” context. These advanced techniques pave the way for their application
in downstream FPCA-related analyses, and the achieved optimal rate of eigenpairs facilitates
the extension of existing theoretical results for fully observed functional data to discreetly
observed case.

The rest of the paper is organized as follows. In Section 2, we give a synopsis of covari-
ance and eigencomponents estimation in functional data. We present the L2 convergence of
eigenfunctions in Section 3, and discuss the uniform convergence problem of functional data
in Section 5. Asymptotic normality of eigenvalues is presented in Section 4. Section 6 pro-
vides an illustration of the phase transition phenomenom in eigenfunctions with synthetic
data. The proof of Theorem 1 is presented in Appendix A, while Appendix B offers a dis-
cussion and insights into the proposed double truncation technique and its application to the
uniform convergence of functional data. The proofs of other theorems and ancillary results
are collected in the Supplementary Material.

In what follows, we denote by An = OP (Bn) the relation P(An ≤ MBn) ≥ 1 − ϵ, and
by An = oP (Bn) the relation P(An ≤ ϵBn) → 0 as n → ∞, for each ϵ > 0 and a pos-
itive constant M . A non-random sequence an is said to be O(1) if it is bounded. For
any non-random sequence bn, we say bn = O(an) if bn/an = O(1), and bn = o(an) if
bn/an → 0. The notation an ≲ bn indicates an ≤ Cbn for sufficiently large n and pos-
tive constant C , and the relation ≳ is defined similarly. We write an ≍ bn if an ≲ bn and
bn ≲ an. For a ∈ R, ⌊a⌋ denotes the largest integer less than or equal to a. For a function
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f ∈ L2[0,1], where L2[0,1] denotes the space of square-integrable functions on [0,1], ∥f∥2
denotes

∫
[0,1] f(s)

2ds, and ∥f∥∞ denotes sups∈[0,1] |f(s)|. For a function A(s, t) ∈ L2[0,1]2,
define ∥A∥2HS =

∫∫
[0,1]2 A(s, t)2dsdt and ∥A∥2(j) =

∫
[0,1]{

∫
[0,1]A(s, t)ϕj(s)ds}2dt, where

{ϕj}∞j=1 are the eigenfunctions of interest. We write
∫
pq and

∫
Apq for

∫
p(u)q(u)du and∫∫

A(u, v)p(u)q(v)dudv occasionally for brevity.

2. Eigen-estimation for discretely observed functional data. Let X(t) be a square
integrable stochastic process on [0,1], and let Xi(t) be independent and identically dis-
tributed (i.i.d.) copies of X(t). The mean and covariance functions of X(t) are denoted by
µ(t) = E{X(t)} and C(s, t) = E[{X(s)− µ(s)}{X(t)− µ(t)}], respectively. According to
Mercer’s Theorem (Indritz, 1963), C(s, t) has the spectral decomposition

(1) C(s, t) =

∞∑
k=1

λkϕk(s)ϕk(t),

where λ1 > λ2 > . . . > 0 are eigenvalues and {ϕj}∞j=1 are the corresponding eigenfunctions,
which form a complete orthonormal system on L2[0,1]. For each i, the process Xi admits
the so-called Karhunen-Loève expansion

(2) Xi(t) = µ(t) +

∞∑
j=1

ξikϕk(t),

where ξik =
∫ 1
0 {Xi(t)− µ(t)}ϕk(t)dt are functional principal component scores with zero

mean and variances λk.
However, in practice, it is only an idealization to have each Xi(t) for all t ∈ [0,1] to

simplify theoretical analysis. Measurements are typically taken at Ni discrete time points
with noise contamination. Specifically, the actual observations for each Xi are given by

(3) {(tij ,Xij) |Xij =Xi(tij) + εij , j = 1, · · · ,Ni},

where εij are random copies of ε, with E(ε) = 0 and Var(ε) = σ2
X . We further assume the

measurements errors {εij}i,j are independent of Xi.
Local linear regression is a popular smoothing technique in functional data analysis due

to its attractive theoretical properties (Yao, Müller and Wang, 2005a; Hall, Müller and Wang,
2006; Li and Hsing, 2010; Zhang and Wang, 2016). The primary goal of this paper is to
develop a unified theory for estimating a larger number of eigenfunctions from discretely
observed functional data. To maintain focus and avoid distractions, we assume that the mean
function µ(t) is known, and set µ(t) = 0 without loss of generality. The scenario involving an
unknown mean function is discussed later in Section 3. We denote by δijl =XijXil the raw
covariance, and define vi = {nNi(Ni − 1)}−1. The local linear estimator of the covariance
function is given by Ĉ(s, t) = β̂0,

(4)

(
β̂0, β̂1, β̂2

)
=argmin

β0,β1,β2

n∑
i=1

vi
∑

1≤l1 ̸=l2≤Ni

{δijl − β0 − β1 (til1 − s)− β2 (til2 − t)}2

× 1

h
K

(
til1 − s

h

)
1

h
K

(
til2 − t

h

)
,

where K is a symmetric, Lipschitz continuous density kernel on [−1,1] and h is the tuning
parameter.
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The estimated covariance function Ĉ(s, t) can be expressed as an empirical version of the
spectral decomposition in (1), given by

(5) Ĉ(s, t) =

∞∑
k=1

λ̂kϕ̂k(s)ϕ̂k(t),

where λ̂k and ϕ̂k are the estimated eigenvalues and eigenfunctions, respectively. These esti-
mates are obtained by solving the eigenequation for Ĉ(s, t):∫

Ĉ(s, t)ϕ̂k(t)dt= λ̂kϕ̂k(s), with normalization
∫

ϕ̂2
k(s)ds= 1.

For specificity, we assume ⟨ϕ̂k, ϕk⟩ ≥ 0.
Before delving into the theoretical details, we provide an overview of eigenfunction esti-

mation in functional data analysis. We start with the resolvent series shown in Equation (6)
and illustrate its application in statistical analysis,

(6) E(∥ϕ̂j − ϕj∥2)≍
∑
k ̸=j

E[{
∫∫

(Ĉ −C)ϕjϕk}2]
(λk − λj)2

.

Such expansions can be found in Bosq (2000), Dou, Pollard and Zhou (2012), and Li and
Hsing (2010); see Chapter 5 in Hsing and Eubank (2015) for details. Denote by ηj the eigen-
gap of λj , that is, ηj := mink ̸=j |λk − λj |. An basic rough bound for E(∥ϕ̂j − ϕj∥2) can be
derived from Equation (6) and Bessel’s inequality,

(7) E(∥ϕ̂j − ϕj∥2)≤ η−2
j E(∥Ĉ −C∥2HS).

However, this bound is suboptimal for two reasons. First, while ηj is bounded away from
0 for a fixed j, the bound implies that the eigenfunctions converge at the same rate as the
covariance function. This is counterintuitive since integration usually brings extra smooth-
ness (Cai and Hall, 2006), which typically results in the eigenfunction estimates converging
at a faster rate than the two-dimensional kernel smoothing rate of ∥Ĉ − C∥2HS. Second, for
j that diverges with the sample size, η−2

j →∞ in the bound cannot be improved. Assuming
λj ≍ j−a, the rate obtained by (7) is slower than j2a+2/n, which is known to be suboptimal
(Wahl, 2022). Therefore, to obtain a sharp rate for E(∥ϕ̂j−ϕj∥2), one should use the original
perturbation series given by (6), rather than its approximation (7).

When each trajectory Xi(t) is fully observed for all t ∈ [0,1], the cross-sectional sam-
ple covariance Ĉ(s, t) = n−1

∑n
i=1Xi(s)Xi(t) is a canonical estimator of C(s, t). Then,

the numerators in each term of (6) can be reduced to the principal components scores un-
der some mild assumptions, for example, E[{

∫∫
(Ĉ − C)ϕjϕk}2] ≲ n−1λjλk (Hall and

Horowitz, 2007; Dou, Pollard and Zhou, 2012). Subsequently, E(∥ϕ̂j − ϕj∥2) is bounded
by (λj/n)

∑
k ̸=j λk/(λk − λj)

2. With the common assumption of the polynomial decay of
eigenvalues, the aforementioned summation is dominated by λj/n

∑
⌊j/2⌋≤k≤2j λk/(λk −

λj)
2, which is O(j2/n) and optimal in the minimax sense (Wahl, 2022). See Lemma 7 in

Dou, Pollard and Zhou (2012) for a detailed elaboration. This suggests that the convergence
rate caused by the inverse issue can be captured by the summation over the set {k ≤ 2j}.

However, we would like to emphasize that when it comes to discretely observed functional
data, all the existing literature utilizing a bound similar to (7) excludes the case of diverging
indices. For instance, the result in Cai and Yuan (2010) is simply a direct application of the
bound in (7). Moreover, their one-dimensional rate is inherited from the covariance estima-
tor, which is assumed to be in a tensor product space that is smaller than the space L2[0,1]2.
On the other hand, the one-dimensional rates obtained by Hall, Müller and Wang (2006) and
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Li and Hsing (2010) utilize detailed calculations based on the approximation of the pertur-
bation series in (6). However, these results are based on the assumption that ηj is bounded
away from zero, which implies that j must be a fixed constant. This is inconsistent with the
nonparametric nature of functional data models, which aim to approximate or regularize an
infinite-dimensional process. Therefore, when dealing with discretely observed functional
data, the key to obtaining a sharp bound for estimated eigenfunctions with diverging indices
lies in effectively utilizing the perturbation series (6).

The main challenges arise from quantifying the summation in (6) without the fully ob-
served sample covariance. For the pre-smoothing method, the reconstructed X̂i achieves
a
√
n convergence in the L2 sense when each Ni reaches a magnitude of n5/4, and

then the estimated covariance function Ĉ(s, t) = n−1
∑n

i=1 X̂i(s)X̂i(t) has an optimal rate
∥Ĉ − C∥HS = OP (n

−1/2). However, this does not guarantee optimal convergence of a di-
verging number of eigenfunctions. The numerators in each term of (6) are no longer the prin-
cipal component scores, and the complex form of this infinite summation makes it difficult
to quantify when |λk − λj | → 0. Similarly, the pooling method also encounters significant
challenges in summing all E[{

∫∫
(Ĉ − C)ϕjϕk}2] with respect to j and k. Specifically, the

convergence rate of ∥Ĉ − C∥2HS should be a two-dimensional kernel smoothing rate with
variance n−1{1+ (Nh)−2} (Zhang and Wang, 2016). However, after being integrated twice,
E[{
∫∫

(Ĉ −C)ϕjϕk}2] has a degenerated kernel smoothing rate with variance n−1. Accord-
ing to Bessel’s inequality, E(∥Ĉ −C∥2HS) can be expressed as

∑
j,k E[{

∫∫
(Ĉ −C)ϕjϕk}2].

However, due to estimation bias, one cannot directly sum all E[{
∫∫

(Ĉ − C)ϕjϕk}2] with
respect to all j, k.

3. L2 convergence of eigenfunction estimates. Based on the issues discussed above,
we propose a novel technique for addressing the perturbation series (6) when dealing with
discretely observed functional data. To this end, we make the following regularity assump-
tions.

ASSUMPTION 1. There exists a positive constant c0 such that E(ξ4j )≤ c0λ
2
j for all j.

ASSUMPTION 2. The second order derivatives of C(s, t), ∂C(s, t)/∂s2, ∂C(s, t)/∂t2

and ∂C(s, t)/∂s∂t are bounded on [0,1]2.

ASSUMPTION 3. The eigenvalues λj are decreasing with j−a ≳ λj ≳ λj+1 + j−a−1 for
a > 1 and each j ⩾ 1.

ASSUMPTION 4. For each j ∈ N+, the eigenfunctions ϕj satisfies sup
t∈[0,1]

|ϕj(t)|=O(1)

and

sup
t∈[0,1]

|ϕ(k)
j (t)|≲ jc/2 sup

t∈[0,1]
|ϕ(k−1)

j (t)|, for k = 1,2,

where c is a positive constant.

ASSUMPTION 5. E[sups∈[0,1] |X(t)|2α]<∞ and E(ε2α)<∞ for α> 1.

Assumptions 1 and 2 are widely adopted in the functional data literature related to smooth-
ing (Yao, Müller and Wang, 2005a; Cai and Yuan, 2010; Zhang and Wang, 2016). The decay
rate assumption on the eigenvalues provides a natural theoretical framework for justifying and
analyzing the properties of functional principal components (Hall and Horowitz, 2007; Dou,
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Pollard and Zhou, 2012; Zhou, Yao and Zhang, 2023). The number of eigenfunctions that can
be well estimated from exponentially decaying eigenvalues is limited to the order of logn,
which lacks practical interest. Consequently, we adopt the assumption of polynomial decay in
eigenvalues. To achieve quality estimates for a specific eigenfunction, its smoothness should
be taken into account. Generally, the frequency of ϕj is higher for larger j, which requires
a smaller bandwidth to capture its local variation. Assumption 4 characterizes the frequency
increment of a specific eigenfunction via the smoothness of its derivatives. For some com-
monly used bases, such as the Fourier, Legendre, and wavelet bases, c = 2. In Hall, Müller
and Wang (2006), the authors assumed that max1≤j≤rmaxs=0,1,2 supt∈[0,1] |ϕ

(s)
j (t)| ≤ C ,

which is only achievable for a fixed r. Therefore, Assumption 4 can be interpreted as a gen-
eralization of this assumption. To analyze the convergence of eigenfunctions effectively, a
uniform convergence rate of the covariance function is needed to handle the local linear es-
timator (4). Assumption 5 is the moment assumption required for uniform convergence of
covariance function and adopted in Li and Hsing (2010) and Zhang and Wang (2016).

For the observation time points {tij}i,j , there are two typical types of designs: the random
design, in which the design points are random samples from a distribution, and the regular
design, where the observation points are predetermined mesh grid. For the random design, the
following assumption is commonly adopted (Yao, Müller and Wang, 2005a; Li and Hsing,
2010; Cai and Yuan, 2011; Zhang and Wang, 2016):

ASSUMPTION 6 (Random design). The design points tij , which are independent of X
and ε, are i.i.d. sampled from a distribution on [0,1] with a density that is bounded away from
zero and infinity.

For the regular design, each sample path is observed on an equally spaced grid {tj}Nj=1,
where Ni = · · · = Nn = N for all subjects. This longitudinal design is frequently encoun-
tered in a various scientific experiments and has been studied in Cai and Yuan (2011). As-
sumption 7 guarantees a sufficient number of observations within the local window for the
kernel smoothing method. For the case where each sample path is observed on the same, but
non-equidistant grid {tj}Nj=1, the results remain applicable by replacing N in Assumption 7
with N∗ = 1/max{tj − tj−1 : j = 2, . . . ,N}. Furthermore, Assumption 8 is needed for the
Riemann sum approximation in the fixed regular design.

ASSUMPTION 7 (Fixed regular design). The design points {tj}Nj=1 are nonrandom, and
there exist constant c2 ≥ c1 > 0, such that for any interval A,B ∈ [0,1],

(a) c1N |A| − 1≤
∑N

j=1 1{tj∈A} ≤max{c2N,1},
(b) c1N

2|A||B| − 1≤
∑N

l1,l2
1{tl1∈A}1{tl2∈B} ≤max{c2N2|A||B|,1},

where |A| denotes the length of A.

ASSUMPTION 8. ∂C(s, t)/∂s2 and ∂C(s, t)/∂t2 are continuously differentiable.

The following theorem is one of our main results. It characterizes the L2 convergence of
the estimated eigenfunctions with diverging indices for both random design (Assumption 6)
and fixed regular design (Assumption 7).

THEOREM 1. Assume Assumptions 1 to 4 hold, further assume Assumption 5 holds with
α> 3.
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(a) For the random design, under Assumption 6, for all j ≤m ∈N+ satisfies m2a+2/n→ 0,
m2a+2/(nN̄2

2h
2)→ 0 and h2max{ma+c,m4a logn}≲ 1,

(8) ∥ϕ̂j − ϕj∥2 =OP

(
j2

n

{
1 +

j2a

N̄2
2

}
+

ja

nN̄2h

(
1 +

ja

N̄2

)
+ h4j2c+2

)
,

where N̄2 = (n−1
∑n

i=1N
−2
i )−1/2.

(b) For the fixed regular design, under Assumption 7 and 8, for all j ≤m ∈ N+ satisfies
m2a+2/n→ 0, m2a+2/(nN2h2)→ 0, Nha ≳ 1 and h2max{ma+c,m4a logn}≲ 1,

(9) ∥ϕ̂j − ϕj∥2 =OP

(
j2

n
+

ja

nNh
+ h4j2c+2

)
.

To help readers better understand and apply this theory, we include a brief outline and high-
light its key elements. Since the local linear estimator is complex, we first extract the domi-
nant component and demonstrate that the remaining terms are dominated by this component.
This approach is a standard technique for analyzing kernel estimators. As discussed in Sec-
tion 2, obtaining the optimal upper bound for eigenfunctions with a diverging indices requires
the use of the perturbation series (6). The challenge lies in bounding this summation over the
infinite index set {k ̸= j} without access to cross-sectional covariance functions in the fully
observed case. To address this, one of the key elements is to evaluate the summation in (6)
separately over the sets S1 = {k ≤ 2j, k ̸= j} and S2 = {k > 2j}. By Lemma 1 in Appendix
A, for each k ∈ S1, E[{

∫∫
(Ĉ −C)ϕjϕk}2] exhibits a degenerate kernel smoothing rate, with

the dominant term scaling as j−ak−a/n. This allows us to capture the nonparametric rate
caused by the inversion issue. For S2, instead of bounding each term E[{

∫∫
(Ĉ −C)ϕjϕk}2]

individually, we treat the summation
∑∞

k=2j+1E[{
∫∫

(Ĉ − C)ϕjϕk}2] as a unity, which
yields a one-dimensional nonparametric rate (nNh)−1. This approach, together with de-
tailed calculations, results in the proof of Theorem 1. The details of the proof are provided in
Appendix A.

The integer m in Theorem 1 represents the maximum number of eigenfunctions that can
be well estimated from the observed data using appropriate tuning parameters. It is important
to note that in Theorem 1, m could diverge to infinity. The upper bound of m is a function
of the sample size n, the sampling rate N̄2, the smoothing parameter h, and the decaying
eigengap ηj or a. As the frequency of ϕj is higher for larger j, smaller h is required to
capture its local variations. If a is large, the eigengap ηj diminishes rapidly, posing a greater
challenge in distinguishing between adjacent eigenvalues. Note that the assumptions of m in
Theorem 1 could encompass most downstream analyses that involve a functional covariate,
such as functional linear regression as discussed in Hall and Horowitz (2007).

Theorem 1 provides a good illustration of both the infinite dimensionality and smoothness
nature of functional data. To better understand this result, note that j2/n is the optimal rate in
the fully observed case. The additional terms on the right-hand side of Equation (8) represent
contamination introduced by discrete observations and measurement errors. In particular,
the term with h4 corresponds to the smoothing bias, while the term (nN̄2h)

−1 reflects the
variance typically associated with one-dimensional kernel smoothing. Terms including N̄−1

2
arise from the discrete approximation, and the terms that involve j with positive powers are
due to the decaying eigengaps associated with an increasing number of eigencomponents.

The first part of Theorem 1 provides a unified result for eigenfunction estimates under
random design without imposing any restrictions on the sampling rate Ni. Similar to the
phase transitions of mean and covariance functions studied in Cai and Yuan (2011) and Zhang
and Wang (2016), Corollary 1 presents a systematic partition that ranges from “sparse” to
“dense” schemes for eigenfunction estimation under the random design, which is meaningful
for FPCA-based models and methods.
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COROLLARY 1. Under Assumptions 1 to 6, and m ∈N+ satisfies (a) of Theorem 1. For
each j ≤m and let hopt(j) = (nN̄2)

−1/5j(a−2c−2)/5(1 + ja/N̄2)
1/5,

(a) If N̄2 ≳ ja,

∥ϕ̂j − ϕj∥2 =OP

(
j2

n
+

j(4a+2c+2)/5

(nN̄2)4/5

)
.

In addition, if N̄2 ≥ n1/4ja+c/2−2,

∥ϕ̂j − ϕj∥2 =OP

(
j2

n

)
.

(b) If N̄2 = o(ja),

∥ϕ̂j − ϕj∥2 =OP

(
j2a+2

nN̄2
2

+
j(8a+2c+2)/5

(nN̄2
2 )

4/5

)
.

Note that hopt(j) is the optimal bandwidth for estimating a specific eigenfunction ϕj .
However, in practice, it suffices to estimate the covariance function just once using the op-
timal bandwidth associated with the largest eigenfunction ϕmmax . This ensures that both the
subspace spanned by the first mmax eigenfunctions and their corresponding projections are
well estimated. When conducting downstream analysis with FPCA, the evaluation of error
rates typically involves the term

∑mmax

j=1 j−β∥ϕ̂j − ϕj∥2. Here mmax denotes the maximum
number of principal components used, and β varies across different scenarios, reflecting how
the influence of each principal component on the error rate is weighted. For example, in the
functional linear model, β > 0 represents the rate at which the Fourier coefficients of the
regression function decay (Hall and Horowitz, 2007). By the first statement of Theorem 1,

mmax∑
j=1

j−β∥ϕ̂j − ϕj∥2 =
m3−β

max

n

(
1 +

m2a
max

N̄2
2

)
+

ma−β+1

nN̄2h

(
1 +

ma
max

N̄2

)
+ h4m2c+3−β.

It can be found that the optimal bandwidth h in the above equation aligns with hopt(mmax)
for all β. This implies that our theoretical framework can be seamlessly adapted to scenarios
where a single bandwidth is employed to attain the optimal convergence rate in the down-
stream analysis.

For the commonly used bases where c = 2, the convergence rate for the jth eigenfunc-
tion achieves optimality as if the curves are fully observed when N̄2 > n1/4ja−1. Keeping
j fixed, the phase transition occurs at n1/4, aligning with results in Hall, Müller and Wang
(2006) and Cai and Yuan (2010), as well as mean and covariance functions discussed in
Zhang and Wang (2016). For n subjects, the maximum index of the eigenfunction that can be
well estimated is less than mmax := n1/(2a+2), which directly follows from the assumption
m2a+2/n→ 0.The phase transition in estimating ϕmmax

occurs at n1/4+(a−1)/(2a+2). This can
be interpreted from two aspects. On one hand, compared to mean and covariance estimation,
more observations per subject are required to obtain optimal convergence for eigenfunctions
with increasing indices, showing the challenges tied to infinite dimensionality and decay-
ing eigenvalues. On the other hand, the fact that n1/4+(a−1)/(2a+2) is only slightly larger than
n1/4 justifies the merits of the pooling method and supports our intuition. When j is fixed and
N̄2 is finite, the convergence rate obtained by Corollary 1 is (nh)−1+h4, which corresponds
to a typical one-dimensional kernel smoothing rate and achieves optimal at h≍ n−1/5. This
result aligns with those in Hall, Müller and Wang (2006) and is optimal in the minimax sense.
When allowing j to diverge, the known lower bound j2/n for fully observed data is attained
by applying van Trees’ inequality to the special orthogonal group (Wahl, 2022). However,
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the argument presented in Wahl (2022) does not directly extend to the discrete case and there
are currently no available lower bounds for the eigenfunctions with diverging indices based
on discrete observations, which remains an open problem that requires further investigation.

Comparing the results of this work with those in Zhou, Yao and Zhang (2023) is also
of interest. The L2 convergence rate for the jth eigenfunction obtained in (Zhou, Yao and
Zhang, 2023) is

(10)
ja+2

n

(
1 +

1

Nh

)
+ h4j2a+2c+2.

It is evident that the results in Zhou, Yao and Zhang (2023) will never reach the optimal
rate j2/n for any sampling rate N . In contrast, Corollary 1 provide a systematic partition
ranging from “sparse” to “dense” schemes for eigenfunction estimation, and the optimal rate
j2/n can be achieved when the sampling rate Ni exceeds the phase transition point. The
optimal rate achieved here represents more than just a theoretical improvement over previous
findings; it also carries substantial implications for downstream analysis. Further discussion
can be found in Section 7.

The following Corollary presents the phase transition of eigenfunctions for fixed regular
design. Note that for fixed regular design, the number of distinct observed time points in an
interval of length h is on the order of Nh, so Nh≳ 1 is required to ensure there is at least
one observation in the bandwidths of kernel smoothing (Shao, Lin and Yao, 2022). Moreover,
Nha ≳ 1 is required to eliminate the Riemann sum approximation bias. The condition Nha ≳
1 is parallel of part (a) in Corollary 1 in the scenario of the random design, which is similar as
the mean and covariance estimation where consistency can only be obtained under the dense
case for regular design (Shao, Lin and Yao, 2022).

COROLLARY 2. Under Assumptions 1 to 5, 7, 8 and m ∈N+ satisfies (b) of Theorem 1.
For each j ≤m and let hopt(j) = (nN)−1/5j(a−2c−2)/5,

∥ϕ̂j − ϕj∥2 =OP

(
j2

n
+

j(4a+2c+2)/5

(nN)4/5

)
.

In addition, if N ≥ n1/4ja+c/2−2,

∥ϕ̂j − ϕj∥2 =OP

(
j2

n

)
.

If the mean function µ(t) is unknown, one could use local linear smoother to fit µ̂(t) = α̂0

with

(α̂0, α̂1) = argmin
α0,α1

1

n

n∑
i=1

1

Ni

Ni∑
j=1

{Xij − α0 − α1(tij − t)}2 1

hµ
K

(
tij − t

hµ

)
.

Then the covariance estimator Ĉ is obtained by replacing the raw covariance δijl in (4) by
δ̂ijl = {Xij − µ̂(tij)}{Xil − µ̂(til)}. The following corollary presents the convergence rate
and phase transition for the case where µ(t) is unknown. It should be noted that the Fourier
coefficients of µ(t) with respect to the eigenfunction ϕj generally do not exhibit a decaying
trend. Therefore, to eliminate the estimation error caused by the mean estimation, an addi-
tional lower bound on N is necessary. This lower bound, denoted as N ≳ ja, aligns with the
partition described in Corollary 1 for the random design case.
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COROLLARY 3. Suppose that Assumptions 1 to 5 hold. Under either of Assumption 6 or
7 and 8, for all m ∈N+ satisfies m2a+2/n, Nha ≳ 1 and h2max{ma+c,m4a logn}≲ 1 and
each j ≤m,

∥ϕ̂j − ϕj∥2 =OP

(
j2

n
+

j(4a+2c+2)/5

(nN̄2)4/5

)
.

In addition, if N̄2 ≥ n1/4ja+c/2−2,

∥ϕ̂j − ϕj∥2 =OP

(
j2

n

)
.

4. Asymptotic normality of eigenvalue estimates. The distribution of eigenvalues
plays a crucial role in statistical learning and is of significant interest in the high-dimensional
setting. Random matrix theory provides a systematic tool for deriving the distribution
of eigenvalues of a squared matrix (Anderson, Guionnet and Zeitouni, 2010; Pastur and
Shcherbina, 2011), and has been successfully applied in various statistical problems, such
as signal detection (Nadler, Penna and Garello, 2011; Onatski, 2009; Bianchi et al., 2011),
spiked covariance models (Johnstone, 2001; Paul, 2007; El Karoui, 2007; Ding and Yang,
2021; Bao et al., 2022), and hypothesis testing (Bai et al., 2009; Chen and Qin, 2010; Zheng,
2012). For a comprehensive treatment of random matrix theory in statistics, we recommend
the monograph by Bai and Silverstein (2010) and the review paper by Paul and Aue (2014).

Despite the success of random matrix theory in high-dimensional statistics, its application
to functional data analysis is not straightforward due to the different structures of functional
spaces. If the observations are taken at the same time points {tj}Nj=1 for all i, one can obtain
an estimator for ΣT =Cov(X̃i, X̃i) + σ2

XIN , where X̃i = (Xi(t1), . . . ,Xi(tN ))⊤. Note that
X̃i can be regarded as a random vector; however the adjacent elements in X̃i are highly cor-
related as N increases due to the smooth nature of functional data. This correlation violates
the independence assumption required in most random matrix theory settings.

In the context of functional data, variables of interest become the eigenvalues of the covari-
ance operator. However, the rough bound obtained by Weyl’s inequality, |λ̂k−λk| ≤ ∥∆∥HS,
is suboptimal from two respects. First, |λ̂k − λk| should have a degenerated kernel smooth-
ing rate with variance n−1/2, whereas ∥∆∥HS has a two-dimensional kernel smoothing rate
with variance (nN̄2

2h
2)−1/2. Second, due to the infinite dimensionality of functional data, the

eigenvalues {λk}k tend to zero as k →∞, so a general bound for all eigenvalues provides
little information for those with larger indices. Although expansions and asymptotic normal-
ity have been studied for a fixed number of eigenvalues, as well as for those with diverging
indices for fully observed functional data, the study of eigenvalues with a diverging index
under the discrete sampling scheme remains limited.

In light of the aforementioned issues, we employ the perturbation technique outlined in
previous sections to establish the asymptotic normality of eigenvalues with diverging indices,
which holds broad implications for inference problems in functional data analysis. Before
presenting our results, we introduce the following assumption, which is standard in FPCA
for establishing asymptotic normality.

ASSUMPTION 9. E(∥X∥6) < ∞ and E(ϵ6) < ∞. For any sequence j1, . . . , j4 ∈ N+,
E(ξj1ξj2ξj3ξj4) = 0 unless each index jk is repeated.

THEOREM 2. Under Assumptions 1 to 4, 6 and 9, for all j ≤ m ∈ N+ satisfy m =
o(n1/(2a+4)), hm2a logn≲ 1 and h4m2a+2c ≲ 1

Σ
− 1

2
n

(
λ̂j − λj

λj
−K2h

2

∫
ϕ
(2)
j (u)ϕj(u)du+ o(h2)

)
d−→N (0,1),
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where

Σn =
4!P0(N)

n

E(ξ4j )− λ2
j

λ2
j

+ 4!
P1(N)

n

∫
{C(u,u) + σ2

X}ϕ2
j(u)

f(u) du

λj

+4
P2(N)

n

1

λ2
j

[∫ {C(u,u) + σ2
X}

ϕ2
j (u)

f(u)
du

]2
−
∫∫

C(u, v)2
ϕ2
j (u)ϕ

2
j (v)

f(u)f(v)
dudv


with K2 =

∫
u2K(u)du and

P0(N) =
1

n

n∑
i=1

(Ni − 2)(Ni − 3)

Ni(Ni − 1)
, P1(N) =

1

n

n∑
i=1

(Ni − 2)

Ni(Ni − 1)
, P2(N) =

1

n

n∑
i=1

1

Ni(Ni − 1)
.

Since λj approaches zero as j approaches infinity, we need to regularize the eigenvalues
so that they can be compared on the same scale of variability. For a fixed j, (λ̂j − λj)/λj is√
n-consistent when h is small. For diverging j, Corollary 4 presents three different types of

asymptotic normalities, depending on the value of P2(N).

COROLLARY 4. Under the assumptions of Theorem 2,

(a) If P2(N)/λ2
j → 0,

√
nh2

∫
ϕ
(2)
j (u)ϕj(u)du→ 0,

√
n

(
λ̂j − λj

λj

)
d−→N

(
0,4!

E(ξ4j )− λ2
j

λ2
j

)
.

(b) If P2(N)/λ2
j →C3 for a positive C3,

√
n

(
λ̂j − λj

λj
−K2h

2

∫
ϕ
(2)
j (u)ϕj(u)du

)
d−→N

(
0,4!

E(ξ4j )− λ2
j

λ2
j

+ 4!
√

C3

∫
{C(u,u) + σ2

X}
ϕ2
j (u)

f(u)
du

+ 4C3


[∫

{C(u,u) + σ2
X}

ϕ2
j (u)

f(u)
du

]2
−
∫∫

C(u, v)2
ϕ2
j (u)ϕ

2
j (v)

f(u)f(v)
dudv




(c) If P2(N)/λ2
j →∞,√

nλ2
j

P2(N)

(
λ̂j − λj

λj
−K2h

2

∫
ϕ
(2)
j (u)ϕj(u)du

)

d−→N

0,4


[∫

{C(u,u) + σ2
X}

ϕ2
j (u)

f(u)
du

]2
−
∫∫

C(u, v)2
ϕ2
j (u)ϕ

2
j (v)

f(u)f(v)
dudv


 .

Compared to the mean and covariance estimators, which are associated with one-
dimensional and two-dimensional kernel smoothing rates respectively, the estimator of eigen-
values exhibits a degenerate rate after being integrated twice. This implies that there is no
trade-off between bias and variance in the bandwidth h, and the estimation bias can be con-
sidered negligible for small values of h. In this scenario, the phase transition is entirely
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determined by the relationship between P2(N) and λj . Specifically, in the dense and ultra-
dense cases where P2(N)/λ2

j <∞, the variance terms resulting from discrete approximation
are dominated by 1/

√
n, corresponding to cases (a) and (b) in Corollary 4. On the other hand,

when each Ni is relatively small, the estimation variance
√

nλ2
j/P2(N) arising from discrete

observations dominates, as outlined in case (c) of Corollary 4. The phase transition point ja

is the same as the case of eigenfunctions outlined in Corollary 1 and 7, and for larger values
of j, more observations are needed due to the vanishing eigengap.

Using similar arguments, we establish the L2 convergence rate for eigenvalues, which is
useful for analyzing models involving functional principal component analysis, such as the
plug-in estimator in Hall and Horowitz (2007).

COROLLARY 5. Under Assumptions 1 to 4 and 6, for all j ≤ m ∈ N+ satisfy m =
o(n1/(2a+4)), hm2a logn≲ 1 and h4m2a+2c ≲ 1,

(λ̂j − λj)
2 =OP

(
j−2a

n

{
P0(N) + j2aP2(N)

}
+ h4j2c−2a

)
.

5. Uniform convergence of covariance and eigenfunction estimates. Classical non-
parametric regression with independent observations has yielded numerous results for the
uniform convergence of kernel-type estimators (Bickel and Rosenblatt, 1973; Hardle, Janssen
and Serfling, 1988; Härdle, 1989). For functional data with in-curve dependence, Yao, Müller
and Wang (2005a) obtained a uniform bound for mean and covariance pooling estimates.
More recently, Li and Hsing (2010) and Zhang and Wang (2016) have studied the strong
uniform convergence of these estimators, showing that these rates depend on both the sam-
ple size and the number of observations per subject. However, uniform results for estimated
eigenfunctions with diverging indices have not been obtained, even in the fully observed case.

Even for the covariance estimates, there remains a theoretical challenge in achieving uni-
form convergence for the covariance function under the dense/ultra-dense schemes. Specif-
ically, to obtain uniform convergence with in-curve dependence in functional data analysis,
a common approach involves employing the Bernstein inequality to obtain a uniform bound
over a finite grid of the observation domain. This grid becomes increasingly dense as the
sample size grows. The goal is then to demonstrate that the bound over the finite grid and
the bound over [0,1] are asymptotically equivalent. This technique has been studied by Li
and Hsing (2010) and Zhang and Wang (2016) to achieve uniform convergence for mean and
covariance estimators based on local linear smoothers. However, due to the unboundedness
natural of functional data, truncation on the observed data is necessary to apply the Bernstein
inequality; that is, XijXil1{Xij≤An}, where An → ∞ as n → ∞. The choice of the trun-
cation sequence An should balance the trade-off between the estimation variance appearing
in the Bernstein inequality and the bias resulting from truncation. Once the optimal An is
chosen, it is essential to impose additional moment conditions on both Xi and εi to ensure
that the truncation bias is negligible. For covariance estimation, the current state-of-the-art
results (Zhang and Wang, 2016) require assuming that the 6/(1− τ)th moments of Xi and εi
are finite, where τ is the sampling rate with N̄2 ≍ nτ/4 for τ ∈ [0,1). However, when N̄2 is
close to n1/4, the value of 6/(1− τ) tends to infinity. Moreover, in the dense and ultra-dense
sampling schemes where N̄2 ≳ n1/4, the discrepancy between the truncated and the original
estimators becomes dominant, preventing the achievement of optimal convergence rates with
the current methods.

We first resolve this issue for covariance estimates and introduce an additional truncation
step on the summation of random quantities after initially truncating XijXil on An. This
approach leverages Bernstein’s inequality twice to achieve a sharp bound while allowing for
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a larger An, thereby reducing the bias introduced by the first truncation. This novel dou-
ble truncation technique provides a unified framework applicable to all sampling schemes
and addresses key limitations in the existing literature. A detailed discussion of the uniform
convergence problem for functional data and the double truncation technique is provided in
Appendix B.

THEOREM 3. Under the Assumptions 1, 5 and 6,

(a) For p, q = 0,1, denote

Rpq(s, t) =

n∑
i=1

vi

Ni∑
l1 ̸=l2

1

h2
K

(
til1 − s

h

)
K

(
til2 − t

h

)(
til1 − s

h

)p( til2 − t

h

)q

δil1l2 .

Then

(11)

sup
s,t∈[0,1]

|Rpq(s, t)−ERpq(s, t)|

=O

(√
lnn

n

(
1 +

1

N̄2h

)
+

∣∣∣∣ lnnn
∣∣∣∣1− 1

α

∣∣∣∣1 + lnn

N̄2h

∣∣∣∣2− 2

α

h−
2

α

)
a.s.

(b) In addition, if Assumption 2 holds and α> 3,
(1). When N̄2/(n/ logn)

1/4 → 0 and h≍ (nN̄2
2 / logn)

−1/6,

sup
s,t∈[0,1]

|Ĉ(s, t)−C(s, t)|≲
(
logn

nN̄2
2

) 1

3

a.s.

(2). When N̄2/(n/ logn)
1/4 →C1 for a positive constant C1 and h≍ (n/ logn)1/4

sup
s,t∈[0,1]

|Ĉ(s, t)−C(s, t)|≲
√

logn

n
a.s.

(3). When N̄2/(n/ logn)
1/4 →∞, h= o(n/ logn)1/4 and N̄2h→∞,

sup
s,t∈[0,1]

|Ĉ(s, t)−C(s, t)|≲
√

logn

n
a.s.

The first statement of Theorem 3 establishes the uniform convergence rate of the variance
term of Ĉ −C for all sampling rates N̄2. It is worth comparing our results with those in Li
and Hsing (2010) and Zhang and Wang (2016). The bias term caused by double truncation,
which appears in the second term on the right-hand side of (11), is smaller than those ob-
tained in Li and Hsing (2010) and Zhang and Wang (2016). As a result, the second statement
of Theorem 3 shows that the truncation bias is dominated by the main term if α > 3, a con-
dition that is much milder compared to the moment assumptions in Li and Hsing (2010) and
Zhang and Wang (2016), thereby establishing the uniform convergence rate for both sparse
and dense functional data. Moreover, when 1< α≤ 3, which corresponds to the case where
X(t) or ε do not possess a sixth order finite moment, the additional term caused by trun-
cation becomes dominant. In summary, by introducing the double truncation technique, we
resolve the aforementioned issues present in the original proofs of Li and Hsing (2010) and
Zhang and Wang (2016), achieve the uniform convergence rate for the covariance estimator
across all sampling schemes, and show that the optimal rates for dense functional data can be
obtained as a special case. Having set the stage, we arrive at the following result that gives
the uniform convergence for estimated eigenfunctions with diverging indices.
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THEOREM 4. Under Assumptions 1 to 5, for all j ≤ m satisfying m2a+2/n = o(1),
m2a+2/(nN̄2

2h
2) = o(1), h4m2a+2c ≲ 1 and hma logn≲ 1,

(12)

∥ϕ̂j − ϕj∥∞ =O

 j√
n
(
√
lnn+ ln j)

1 +
ja

N̄2
+

√
ja−1

N̄2h

(
1 +

√
ja

N̄2

)
+ ja

∣∣∣∣ lnnn
∣∣∣∣1− 1

α

∣∣∣∣j1/2 + lnn

N̄2h

∣∣∣∣1− 1

α

h−
1

α + h2jc+1 log j

)
a.s.

The contributions of Theorem 4 are two-fold. First, our result is the first to establish uni-
form convergence for eigenfunctions with diverging indices, providing a useful tool for the
theoretical analysis of models involving FPCA and inverse issues. Second, the double trun-
cation technique we introduced reduces the truncation bias, making our results applicable to
all sampling schemes. For a fixed j, Corollary 6 below discusses the uniform convergence
rate under different ranges of N̄2. When α> 5/2, the truncation bias in equation (12) is dom-
inated by the first two terms for all scenarios of N̄2. If N̄2/(n/ logn)

1/4 → 0, ∥ϕ̂j − ϕj∥∞
admits a typical one-dimensional kernel smoothing rate that differs only by a logn factor,
consistent with the result in Hall, Müller and Wang (2006) and Li and Hsing (2010). In sum-
mary, the introduction of the double truncation technique facilitates the attainment of uniform
convergence across all sampling schemes within functional data analysis. This advancement
prompts more in-depth research, particularly in the analysis of non-compact data exhibiting
in-curve dependence.

COROLLARY 6. Under the assumptions of Theorem 4. If j is fixed and α> 5/2,

(1). When N̄2/(n/ logn)
1/4 → 0 and h≍ (nN̄2/ logn)

−1/5,

sup
t∈[0,1]

|ϕ̂j(t)− ϕj(t)|=O

((
logn

nN̄2

) 2

5

)
a.s.

(2). When N̄2/(n/ logn)
1/4 →C2 > 0 and h≍ (n/ logn)1/4

sup
t∈[0,1]

|ϕ̂j(t)− ϕj(t)|=O

(√
logn

n

)
a.s.

(3). When N̄2/(n/ logn)
1/4 →∞, h= o(n/ logn)1/4 and N̄2h→∞,

sup
t∈[0,1]

|ϕ̂j(t)− ϕj(t)|=O

(√
logn

n

)
a.s.

The following corollary established the optimal uniform convergence rate for eigenfunc-
tions with diverging indices under mild assumptions, a finding that is new even in the fully
observed scenario. In contrast to the L2 convergence, the maximum number of eigenfunc-
tions that can be well-estimated under the | · |∞ norm is slightly smaller and depends on the
moment characterized by assumption α. If α > 5/2, then mmax can increase as the sample
size n goes to infinity, and the phase transition point N̄2 ≥ma

max aligns with the L2 case.

COROLLARY 7. Under the assumptions of Theorem 4 and 5. Given α > 5/2, denote
mmax =min{n

1

2a , n
α−5/2

2αa−α−1 }. If N̄2 ≥ma
max, h4m2c

max ≤ n−1 and N̄2h≥mmax, for all j ≤
mmax,

sup
t∈[0,1]

|ϕ̂j(t)− ϕj(t)|=O

(
j√
n
(
√
lnn+ ln j)

)
a.s.
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6. Numerical experiment. In this section, we carry out a numerical evaluation of the
convergence rates of eigenfunctions. The underlying trajectories are generated as Xi(t) =∑50

j=1 ξijϕj(t), for i = 1, . . . , n. The principal component scores are independently gener-
ated following the distribution ξij ∼ N(0, j−2) for all i and j. We define the eigenfunc-
tions as ϕ1(t) ≡ 1, and for j ≥ 1, as ϕj(t) =

√
2cos(jπt). The actual observations are

Xij = Xi(tij) + ϵij , with noise ϵij following N (0,0.12), and the time points tij sampled
from a uniform distribution Unif[0,1], for j = 1, . . . ,N . Each setting is repeated for 200
Mento-Carlo runs to mitigate the randomness that may occur in a single simulation.

When the phase transition occurs, our theory indicates a proportional relationship such
that log(∥ϕ̂j − ϕj∥2) ∝ 2 log(j) for each fixed n and log(∥ϕ̂j − ϕj∥2) ∝ − log(n) for each
fixed j. Figure 1 illustrates this phenomenon by showing that as N increases, the relationship
between log(∥ϕ̂j − ϕj∥2) and j tends to be linear with a slope of 2, indicating that the phase
transition might occur around N = 50. Figure 1 additionally offers a practical way for iden-
tifying the phase transition point of N . This is valuable in guiding both data collection and
experimental design, contributing to more cost-effective data collecting strategies. Similarly,
Figure 2 shows that as N increases, the relationship between log(∥ϕ̂j − ϕj∥2) and log(n)
also tends to follow a linear trend, but with a slope of −1.
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FIG 1. Plot of log(∥ϕ̂j − ϕj∥2) over the logarithm of number of eigenfunctions. The sample size is n = 240.
The colored dashed lines correspond to different value of N . The solid red line represents the theoretical optimal
value.

We compare the integrated mean square error ∥ϕ̂j −ϕj∥2 for j = 1,2,3, between the pool-
ing and pre-smoothing methods. The data are generated as before, using four different sam-
ple sizes (n = 100,260,240,500) and three diffferent sampling schemes (N = 30,50,100).
The pre-smoothing method is implemented using the R package fda (Ramsay, Hooker
and Graves, 2024), with each subject pre-smoothed by smooth.basis() employing 20
Fourier basis functions. The results summarized in Table 1 indicate that the pooling method
consistently outperforms the pre-smoothing method in all settings when N = 30. In the
ultra-dense cases (N = 50 and N = 100), the pooling method performs as well as the pre-
smoothing method for larger sample sizes and shows superior performance for relatively
small sample sizes. This suggests the use of pooling estimation in most cases, given its effi-
ciency in both sparse and dense schemes.
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FIG 2. Plot of log(∥ϕ̂j − ϕj∥2) for the first (left), second (middle) and third (right) eigenfunctions over log(n).
The colored dashed lines correspond to different value of N . The solid red line represents the theoretical optimal
value.

TABLE 1
∥ϕ̂j − ϕj∥2 for j = 1,2,3 across different sample sizes and sampling schemes using pooling and pre-smoothing

methods, respectively, where all values are multiplied by 102 for better visualization.

Methods

1st 2nd 3rd

N=30 N=50 N=100 N=30 N=50 N=100 N=30 N=50 N=100

Pooling

n=100 .9845 .8551 .7617 4.184 3.153 2.523 10.73 6.774 5.343

n=160 .6970 .5228 .4895 2.599 2.090 1.817 5.902 4.460 3.563

n=240 .4514 .4738 .3078 1.814 1.622 1.342 4.544 3.653 2.988

n=500 .2092 .1938 .1472 1.091 .8426 .7179 2.961 2.240 2.021

Presmoothing

n=100 1.433 .8591 .7641 4.382 3.318 2.689 11.21 6.780 5.348

n=160 1.230 .5239 .4896 3.143 2.270 1.981 5.986 4.481 3.566

n=240 .9109 .4739 .3092 2.308 1.792 1.504 4.666 3.663 2.989

n=500 .5403 .1942 .1473 2.086 1.005 .8799 3.838 2.240 2.022

7. Conclusion and discussion. In this paper, we focus on the convergence rate of eigen-
functions with diverging indices for discretely observed functional data. We propose new
techniques to handle the perturbation series and establish sharp bounds for eigenvalues
and eigenfunctions across different convergence types. Additionally, we extend the parti-
tion “dense” and “sparse” defined for mean and covariance functions to principal compo-
nents analysis. Another notable contribution of this paper is the double truncation technique
for handling uniform convergence. Existing results on uniform convergence for covariance
estimation require a strong moment condition on X(t) and are only applicable to sparse func-
tional data where Ni = op(n

1/4). By employing the double truncation technique proposed in
this paper, we establish an improved bound for the truncated bias, which ensures the uni-
form convergence of the covariance and eigenfunctions across all sampling schemes under
mild conditions. These asymptotic properties play a direct role in various types of statistical
inference involving functional data (Yao, Müller and Wang, 2005a; Li and Hsing, 2010).

Furthermore, the optimal rate achieved in this paper holds significant implications for
downstream analysis. Since most functional regression models encounter inverse issues due
to the infinite dimensionality of functional covariates, the convergence rates in this paper
would help improve existing theoretical findings in downstream analyses from fully observed
functional data to various sampling designs. Consider the functional linear model E[Yi|Xi] =∫
βXi with β =

∑∞
k=1 k

−bϕk. Without a sharp bound for eigenfunctions, achieving optimal
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convergence for standard and efficient plug-in estimators becomes challenging. Therefore,
methods like approximated least squares and sample splitting, as discussed in Zhou, Yao
and Zhang (2023), are necessary in the modeling phase. These complex methods require
estimating principal components scores and do not efficiently utilize information gained from
pooling. As a result, the phase transition for the functional linear model obtained by Zhou,
Yao and Zhang (2023) is max{n

2a+2

a+2b , n
a+b

a+2b }, which is significantly greater than 1/2. In
contrast, by using the new results in this paper, one can directly apply the plug-in estimator
from Hall and Horowitz (2007) and achieve a phase transition of n

1

4
+ 3a−2b

4(a+2b) for the functional
linear model. Additionally, for complex regression models like the functional generalized
linear model or functional Cox model, the methods developed in this paper could serve as a
cornerstone for further exploration.

APPENDIX A: PROOF OF THEOREM 1

In this section, we outline the proof of Theorem 1 under the random design setting. The
detailed proofs of the auxiliary results, as well as the case of fixed design, are provided in the
Supplement.

Recall Ĉ(s, t) = β̂0 in (4) and β̂0 has the analytical from

β̂0(s, t) =
R00(s, t)I1(s, t) +R10(s, t)I2(s, t) +R01(s, t)I3(s, t)

S00(s, t)I1(s, t) + S10(s, t)I2(s, t) + S01(s, t)I3(s, t)
,

where

Spq(s, t) =

n∑
i=1

vi

Ni∑
l1 ̸=l2

1

h2
K

(
til1 − s

h

)
K

(
til2 − t

h

)(
til1 − s

h

)p( til2 − t

h

)q

;

Rpq(s, t) =

n∑
i=1

vi

Ni∑
l1 ̸=l2

1

h2
K

(
til1 − s

h

)
K

(
til2 − t

h

)(
til1 − s

h

)p( til2 − t

h

)q

δil1l2

for p, q = 0,1,2 and

I1(s, t) = S02(s, t)S20(s, t)− S2
11(s, t), I2(s, t) = S01(s, t)S11(s, t)− S02(s, t)S10(s, t)

I3(s, t) = S10(s, t)S11(s, t)− S20(s, t)S01(s, t).

Similar calculations show that

β̂1(s, t) =
1

h

R00(s, t)I2(s, t) +R10(s, t)J1(s, t) +R01(s, t)J3(s, t)

S00(s, t)I1(s, t) + S10(s, t)I2(s, t) + S01(s, t)I3(s, t)

and

β̂2(s, t) =
1

h

R00(s, t)I3(s, t) +R10(s, t)J3(s, t) +R01(s, t)J2(s, t)

S00(s, t)I1(s, t) + S10(s, t)I2(s, t) + S01(s, t)I3(s, t)

where

J1(s, t) = S00(s, t)S02(s, t)− S2
01(s, t), J2(s, t) = S00(s, t)S20(s, t)− S2

10(s, t)

J3(s, t) = S10(s, t)S01(s, t)− S00(s, t)S11(s, t).

In the following, we omit the arguments (s, t) in the functions β̂1, β̂2, Spq , Rpq , Ir , and Jr
for p, q = 0,1,2 and r = 1,2,3, whenever there is no ambiguity. Some calculations show that
Ĉ(s, t) = (R00 − hβ̂1S10 − hβ̂2S01)/S00. We further define

C̃0(s, t) =

{
R00 −C(s, t)S00 − h

∂C(s, t)

∂s
(s, t)S10 − h

∂C(s, t)

∂t
(s, t)S01

}
/f(s)f(t),
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where f(s) is the density function of tij .
By the proof of Theorem 5.1.8 in Hsing and Eubank (2015), for j ∈ m and on the set

Ωm(n,N,h) = {∥Ĉ −C∥HS ≤ ηm/2}, the following expansion holds:

(13)

ϕ̂j − ϕj =
∑
k ̸=j

∫
(Ĉ −C)ϕjϕk

(λj − λk)
ϕk +

∑
k ̸=j

∫
(Ĉ −C)(ϕ̂j − ϕj)ϕk

(λj − λk)
ϕk

+
∑
k ̸=j

∞∑
s=1

(λj − λ̂j)
s

(λj − λk)s+1

{∫
(Ĉ −C)ϕ̂jϕk

}
ϕk +

{∫
(ϕ̂j − ϕj)ϕj

}
ϕj .

Such kind of expansion can also be found in Hall and Hosseini-Nasab (2006) and Li
and Hsing (2010). Below, when we say that a bound is valid when Ωm(n,N,h) holds,
this should be interpreted as stating that the bound is valid for all realizations for which
∥Ĉ − C∥HS ≤ ηm/2 (Hall and Horowitz, 2007). Under assumptions m2a+2/n → 0,
m2a+2/(nN̄2

2h
2) → 0 and h2max{ma+c,m4a logn} ≲ 1, we have P(Ωm(n,N,h)) → 1.

Since limD→∞ limsupn→∞P (∥ϕ̂j − ϕj∥>Dτn) = 0 implies ∥ϕ̂j − ϕj∥=OP (τn) for any
positive sequence τn, the results in OP form that we aim to prove pertain only to the prob-
abilities of differences. Therefore, it suffices to work with bounds established under the
assumption that P(Ωm)→ 1, as discussed in Section 5.1 of Hall and Horowitz (2007).

We first show that E(∥ϕ̂j −ϕj∥2) is dominated by the L2 norm of the first term in the right
hand side of equation (13). By Bessel’s inequality, we see that

(14) E

∥∥∥∥∥∥
∑
k ̸=j

∫
(Ĉ −C)(ϕ̂j − ϕj)ϕk

(λj − λk)
ϕk

∥∥∥∥∥∥
2

≤ E
∥Ĉ −C∥2HS∥ϕ̂j − ϕj∥2

(2ηj)2
<

1

16
E∥ϕ̂j − ϕj∥2,

where the last equality comes from the fact η−1
j ∥Ĉ −C∥< 1/2 on Ωm(n,N,h). Similarly,

(15)

E

∥∥∥∥∥∥
∑
k ̸=j

∞∑
s=1

(λj − λ̂j)
s

(λj − λk)s+1

{∫
(Ĉ −C)ϕ̂jϕk

}
ϕk

∥∥∥∥∥∥
2

=E
∑
k ̸=j

(λj − λ̂j)
2

(λj − λk)
2(λ̂j − λk)

2

{∫
(Ĉ −C)ϕ̂jϕk

}2

≤2E
∥Ĉ −C∥2HS

(2ηj − ∥Ĉ −C∥HS)2

∑
k ̸=j

{∫
(Ĉ −C)ϕjϕk

}2
(
λj − λk

)2 +
∑
k ̸=j

{∫
(Ĉ −C)(ϕ̂j − ϕj)ϕk

}2
(
λj − λk

)2


≤8

9
E

∥Ĉ −C∥2HS

η2j

∑
k ̸=j

{∫
(Ĉ −C)ϕjϕk

}2
(
λj − λk

)2 +
∥Ĉ −C∥4HS

η4j
∥ϕ̂j − ϕj∥2



≤2

9
E
∑
k ̸=j

{∫
(Ĉ −C)ϕjϕk

}2
(
λj − λk

)2 +
1

18
E∥ϕ̂j − ϕj∥2.

Combine (13) to (15) and the fact ∥{
∫
(ϕ̂j − ϕj)ϕj}ϕj∥= 1/2∥ϕ̂j − ϕj∥2, E(∥ϕ̂j − ϕj∥2) is domi-

nated by the first term in the right hand side of equation (13). Thus,

(16) E(∥ϕ̂j − ϕj∥2)≲
∑
k ̸=j

E
{(∫

C̃0ϕjϕk

)2}
(λj − λk)

2
+
∑
k ̸=j

E
[{∫

(Ĉ −C − C̃0)ϕjϕk

}2]
(λj − λk)

2
.
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We focus on the first term on the right-hand side of equation (16). As discussed in Section
2, the summation

∑
k ̸=j E{(

∫
C̃0ϕjϕk)

2}/(λj − λk)
2 should be evaluated separately over the

sets S1 = {k ≤ 2j, k ̸= j} and S2 = {k > 2j}. The following lemma provides sharp bounds for
E{(
∫
C̃0ϕjϕk)

2}, enabling precise estimates for the summation over the sets S1 and S2.

LEMMA 1. Under assumptions 1 to 4, 6, h4j2a+2c ≲ 1 and hja logn ≲ 1, the following holds
for all 1≤ k ≤ 2j:

E

[{∫∫
C̃0(s, t)ϕj(s)ϕk(t)dsdt

}2
]
≲

1

n

(
j−ak−a +

j−a + k−a

N̄2
+

1

N̄2
2

)
+ h4k2c−2a.

Additionally, for k > 2j,
∞∑

k=2j+1

E

[{∫∫
C̃0(s, t)ϕj(s)ϕk(t)dsdt

}2
]

≲
1

n

(
j1−2a +

h−1j−a + j1−a

N̄2
2

+
1

hN̄2
2

)
+ h4j1+2c−2a.

Then, the first term in the right hand side of (16) is bounded by

∑
k ̸=j

E
{(∫

C̃0ϕjϕk

)2}
(λj − λk)

2
=
∑
k ̸=j
k≤2j

E
{(∫

C̃0ϕjϕk

)2}
(λj − λk)

2
+
∑
k>2j

E
{(∫

C̃0ϕjϕk

)2}
(λj − λk)

2

≲h4j2c+2 +
j2

n

{
1 +

ja

N̄2
+

j2a

N̄2
2

}
+ h4j2c+1 +

1

n

(
j +

ja

N̄2h
+

ja+1

N̄2
+

j2a

N̄2
2h

)

≲
j2

n

{
1 +

ja

N̄2
+

j2a

N̄2
2

}
+

ja

nh

(
1

N̄2
+

ja

N̄2
2

)
+ h4j2c+2,

where the second inequality comes from Lemma 7 in Dou, Pollard and Zhou (2012) and Lemma 1.
By Bessel equality, the second term in the right hand side of equation (16) is bounded by

∑
k ̸=j

E
{∫

(Ĉ −C − C̃0)ϕjϕk

}2
(λj − λk)2

≤

∥∥∥Ĉ −C − C̃0

∥∥∥2
HS

η2j
≲ j2a+2

∥∥∥Ĉ −C − C̃0

∥∥∥2
HS

.

Note that

(17)

Ĉ(s, t)−C(s, t)− C̃0(s, t)

=

[
−h

{
β̂1 −

∂C(s, t)

∂s

}
S10 − h

{
β̂2 −

∂C(s, t)

∂t

}
S01

]
/S00

+

{
R00 −C(s, t)S00 − h

∂C(s, t)

∂s
S10 − h

∂C(s, t)

∂t
S01

}{
1

S00
− 1

f(s)f(t)

}
.

For the first part in the right hand side of (17), some calculations show that

(18)

h

{
β̂1 −

∂C(s, t)

∂s

}
S10 + h

{
β̂2 −

∂C(s, t)

∂t

}
S01

=
S10I2 + S01I3

S00I1 + S10I2 + S01I3

{
R00 −C(s, t)S00 − h

∂C(s, t)

∂s
S10 − h

∂C(s, t)

∂t
S01

}
+

S10J1 + S01J3
S00I1 + S10I2 + S01I3

{
R10 −C(s, t)S10 − h

∂C(s, t)

∂s
S20 − h

∂C(s, t)

∂t
S11

}
+

S10J3 + S01J2
S00I1 + S10I2 + S01I3

{
R01 −C(s, t)S01 − h

∂C(s, t)

∂s
S11 − h

∂C(s, t)

∂t
S02

}
.
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To bound each term in the right hand side of equation (18), we need the following proposition.

PROPOSITION 1. Under Assumption 2 and 6,

(a) infs,t S00(s, t)I1(s, t) + S10(s, t)I2(s, t) + S01(s, t)I3(s, t) and infs,t S00(s, t) are bounded
away from zero alost surely.

(b)

∥S00(s, t)− f(s)f(t)∥2HS =OP

(
h2 +

1

n

{
1 +

1

N̄2
2h

2

})
.

(c) For p, q = 0,1,2, ∥Spq∥∞ =O(1) a.s.
(d) For p, q = 0,1, p+ q = 1∥∥Spq(s, t)∥∥2HS

=OP

(
h+

logn

n

{
1 +

1

N̄2
2h

2

})
.

(e) In addition, if Assumption 5 holds with α> 3, for p, q = 0,1

sup
s,t

∣∣∣∣Rpq(s, t)−C(s, t)Spq(s, t)− h
∂C(s, t)

∂s
Sp+1,q(s, t)− h

∂C(s, t)

∂t
Sp,q+1(s, t)

∣∣∣∣
=O

(
h2 +

√
logn

n

{
1 +

1

N̄2
2h

2

})
a.s.

By equation (17) and (18), the HS-norm of Ĉ(s, t)−C(s, t)− C̃0 can be bounded by

(19)

∥∥∥Ĉ(s, t)−C(s, t)− C̃0

∥∥∥2
HS

≲ sup
s,t

∥S10∥2HSI
2
2 + ∥S01∥2HSI

2
3

S2
00(S00I1 + S10I2 + S01I3)2

×
∥∥∥∥R00 −C(s, t)S00 − h

∂C(s, t)

∂s
S10 − h

∂C(s, t)

∂t
S01

∥∥∥∥2
∞

+ sup
s,t

∥S10∥2HSJ
2
1 + ∥S01∥2HSJ

2
3

S2
00(S00I1 + S10I2 + S01I3)2

×
∥∥∥∥R10 −C(s, t)S10 − h

∂C(s, t)

∂s
S20 − h

∂C(s, t)

∂t
S11

∥∥∥∥2
∞

+ sup
s,t

∥S10∥2HSJ
2
3 + ∥S01∥2HSJ

2
2

S2
00(S00I1 + S10I2 + S01I3)2

×
∥∥∥∥R01 −C(s, t)S01 − h

∂C(s, t)

∂s
S11 − h

∂C(s, t)

∂t
S02

∥∥∥∥2
∞

+ sup
s,t

∣∣∣R00 −C(s, t)S00 − h
∂C(s,t)

∂s S10 − h
∂C(s,t)

∂t S01

∣∣∣2
S2
00f(s)

2f(t)2
∥S00 − f(s)f(t)∥2HS .

=OP

(
h5 +

h

n

{
1 +

logn

N̄2
2h

2

})
.

Since under assumption hj2a logn= o(1), j2a+2∥Ĉ −C − C̃0∥2HS is dominated by the first term of
equation (16), this completes the proof.
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APPENDIX B: DOUBLE TRUNCATION TECHNIQUE IN UNIFORM
CONVERGENCE.

In obtaining the uniform convergence of the mean and covariance functions for functional data,
a key quantity is the rate of sups,t∈[0,1] |Rpq(s, t) − ERpq(s, t)|. To handle the uniform rate on a
continuous interval like [0,1], a well-developed technique (Li and Hsing, 2010; Zhang and Wang,
2016) involves considering a mesh grid χ(ρ) = {n−ρ(i, j) | i, j ∈ Z∩ (0, nρ)} on [0,1]2 with a gap of
n−γ . The rate can then be decomposed as

(20) sup
s,t∈[0,1]

|R00(s, t)−ER00(s, t)| ≤ sup
(s,t)∈χ(ρ)

|R00(s, t)−ER00(s, t)|+D,

where the second term can be proven to be negligible due to the smoothness of the kernel function.
Rewrite R00 −ER00 =

∑n
i=1 Vi, where

Vi =
1

nNi(Ni − 1)

∑
1≤l1 ̸=l2≤Ni

1

h2
K
(
til1 − s

h

)
K
(
til2 − t

h

)
δil1l2

are zero-mean independent random variables. A common technique to establish the rate for the first
term on the right-hand side of (20) is to use the inequality

P

(
sup

(s,t)∈χ(ρ)
|R00(s, t)−ER00(s, t)| ≥Man

)
≲ 2n2ρP

(∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣≥Man

)
,

where an is the desired rate and M is a larger constant. The probability P(|
∑n

i=1 Vi| ≥Man) can
then be bounded using Bernstein’s inequality. Finally, Borel–Cantelli’s Lemma is applied to show that
the event {

sup
(s,t)∈χ(ρ)

|R00(s, t)−ER00(s, t)| ≥Man

}
occurs almost surely.

However, due to the unboundedness of functional data, δil1l2 =Xil1Xil2 is unbounded. To apply
Bernstein’s inequality, it is necessary to truncate δil1l2 with a sequence An →∞ as n→∞. Specifi-
cally, we have

(21) sup
(s,t)∈χ(ρ)

|R00(s, t)−ER00(s, t)| ≤ sup
(s,t)∈χ(ρ)

|R̃00(s, t)−ER̃00(s, t)|+E,

where R̃00(s, t) =
∑n

i=1 Vi1(|δil1l2 |≤An), and E represents the truncation bias. The uniform con-
vergence of sup(s,t)∈χ(ρ) |R00(s, t)− ER00(s, t)| can be achieved by choosing an optimal An such
that the two terms on the right-hand side of (21) are balanced. Once the optimal An is determined,
it becomes essential to impose additional moment conditions on both Xi and εi to ensure that the
truncation bias E is negligible.

To apply Bernstein’s inequality to R̃00(s, t), it is necessary to bound Ṽi = Vi1(|δil1l2 |≤An) and its

second-order moment. A straightforward bound for Ṽi is given by

(22) Ṽi =
1

nNi(Ni − 1)

∑
1≤l1 ̸=l2≤Ni

1

h2
K
(
til1 − s

h

)
K
(
til2 − t

h

)
δil1l21(|δil1l2 |≤An) ≤

An

h2n
.

However, using this rough bound causes the first term on the right-hand side of (21) to become too
large, requiring An to be relatively small. As a consequence, relatively small An requires a strong
moment assumptions on Xi and εi to make the truncation bias negligible. By applying the bound in
(22), the current state-of-the-art results (Zhang and Wang, 2016) require the 6/(1 − τ)th moments
of Xi and εi to be finite, where τ is the sampling rate, and N̄2 ≍ nτ/4 for τ ∈ [0,1). However, as
N̄2 approaches n1/4, the value of 6/(1− τ) tends to infinity. Furthermore, in dense and ultra-dense
sampling schemes where N̄2 ≳ n1/4, the discrepancy between the truncated and the original estimators
becomes dominant, preventing the achievement of optimal convergence rates with the current methods.
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To address this issue and establish a unified theory for determining the uniform convergence rate of
the covariance function, we propose a double truncation technique to obtain a sharper bound for Ṽi.
Note that

Ṽi ≤An
1

n

Ni

Ni − 1
Ji(s)Ji(t),

where Ji(s) := h−1∑Ni
l=1K((til − s)/h). For any fixed M > 5, Using Bernstein’s inequality again

gives

(23) P (Ji(s)>M)≤ exp

(
−MNih

3

)
.

Define ˜̃
V i = Ṽi1

(|Ṽi(s,t)|≤An
1
n

NiM
2

Ni−1
)

and R̃00(s, t) =

n∑
i=1

˜̃
V i

then

(24) sup
(s,t)∈χ(ρ)

|R̃00(s, t)−ER̃00(s, t)| ≤ sup
(s,t)∈χ(ρ)

| ˜̃R00(s, t)−E ˜̃R00(s, t)|+ F.

The first term on the right-hand side of (24) can be bounded using Bernstein’s inequality with the

bound ˜̃V i ≲ AnM
2/n. The bias term F caused by the second truncation can also be bounded using

(23). The final convergence rate is obtained by selecting optimal values for M and An to balance

sup(s,t)∈χ(ρ) |
˜̃
R00(s, t)−E ˜̃R00(s, t)|, the first truncation error E, and the second truncation bias F .

The detailed proof of Theorem 3 can be found in the Supplement, where the optimal convergence
rate is established for both sparse and dense sampling schemes under mild moment assumptions.
In summary, using the double truncation technique, we decompose the previous dominating term

sup(s,t)∈χ(ρ) |R̃00(s, t) − ER̃00(s, t)| into two components: sup(s,t)∈χ(ρ) |
˜̃
R00(s, t) − E ˜̃R00(s, t)|

and F . By applying a sharp bound to F , the term sup(s,t)∈χ(ρ) |R̃00(s, t) − ER̃00(s, t)| becomes
significantly smaller compared to using the bound in (22) directly.
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SUPPLEMENTARY MATERIAL

The Supplement contains detailed proofs of the theorems presented in Sections 4 and 5,
along with auxiliary results.
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