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Situations of a functional predictor paired with a scalar response are in-
creasingly encountered in data analysis. Predictors are often appropriately
modeled as square integrable smooth random functions. Imposing minimal
assumptions on the nature of the functional relationship, we aim to estimate
the directional derivatives and gradients of the response with respect to the
predictor functions. In statistical applications and data analysis, functional
derivatives provide a quantitative measure of the often intricate relationship
between changes in predictor trajectories and those in scalar responses. This
approach provides a natural extension of classical gradient fields in vector
space and provides directions of steepest descent. We suggest a kernel-based
method for the nonparametric estimation of functional derivatives that utilizes
the decomposition of the random predictor functions into their eigenfunc-
tions. These eigenfunctions define a canonical set of directions into which
the gradient field is expanded. The proposed method is shown to lead to as-
ymptotically consistent estimates of functional derivatives and is illustrated
in an application to growth curves.

1. Introduction. Situations where one is given a functional predictor and a
continuous scalar response are increasingly common in modern data analysis.
While most studies to date have focused on functional linear models, the structural
constraints imposed by these models are often undesirable. To enhance flexibil-
ity, several nonparametric functional regression approaches have been discussed.
Since these models are not subject to any assumptions except smoothness, they
are very widely applicable. The price one pays, of course, is that convergence will
be slower when compared with functional linear models. The situation is compa-
rable to that of extending ordinary linear regression to nonparametric regression.
By abandoning restrictive assumptions, such extensions greatly enhance flexibility
and breadth of applicability. Under suitable regularity assumptions, convergence
of such functional nonparametric models is guaranteed for a much larger class of
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functional relationships, and this insurance is often well worth the slower rates of
convergence.

Suppose we observe a sample of i.i.d. data (X1, Y1), . . . , (Xn,Yn), generated by
the model

Y = g(X) + ε,(1)

where X is a random function in the class L2(I) of square-integrable functions
on the interval I = [0,1], g is a smooth functional from L2(I) to the real line
and ε represents an error, independent of X, with zero expected value and finite
variance. In the nonparametric approach, one aims to conduct inference about g

without imposing specific structure, usually that g is a linear functional. The tradi-
tional functional linear model would have g(x) = a + ∫

bx, where a is a constant
and b a function, but even here the “regression parameter function” b cannot be
estimated at the parametric rate n−1/2, unless it is subject to a finite-parameter
model; this model has been well investigated in the literature. Examples of such
investigations include Ramsay and Dalzell (1991), Cuevas, Febrero and Fraiman
(2002), Cardot et al. (2003), Cardot, Ferraty and Sarda (2003), James and Silver-
man(2005), Ramsay and Silverman (2005), Yao, Müller and Wang (2005b) and
Hall and Horowitz (2007).

While the functional linear regression model has been shown to provide satis-
factory fits in various applications, it imposes a linear restriction on the regression
relationship and, therefore, cannot adequately reflect nonlinear relations. The sit-
uation is analogous to the case of a simple linear regression model where a non-
parametric regression approach often provides a much more adequate and less bi-
ased alternative approach. Likewise, there is sometimes strong empirical evidence,
for example, in the form of skewness of the distributions of empirical component
scores, that the predictor function X is not Gaussian. The problem of estimating
a nonparametric functional regression relation g in the general setting of (1) is
more difficult compared to functional linear regression, and the literature is much
sparser. It includes the works of Gasser, Hall and Presnell (1998) and Hall and
Heckman (2002) on the estimation of distributions and modes in function spaces,
and of Ferraty and Vieu (2003, 2004, 2006) on nonparametric regression with
functional predictors. Recent developments are reviewed in Ferraty, Mas and Vieu
(2007).

To lay the foundations for our study, we introduce an orthonormal basis for
L2(I), say ψ1,ψ2, . . . , which, in practice, would generally be the basis connected
to the spectrum of the covariance operator, V (s, t) = cov{X(s),X(t)}:

V (s, t) =
∞∑

j=1

θjψj (u)ψj (v),(2)

where the ψj ’s are the orthonormal eigenfunctions, and the θj ’s are the respective
eigenvalues of the linear operator with kernel V . The terms in (2) are ordered as
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θ1 ≥ θ2 ≥ · · · . The empirical versions of the ψj ’s and θj ’s arise from a similar
expansion of the standard empirical approximation V̂ to V ,

V̂ (s, t) = 1

n

n∑
i=1

{Xi(s) − X̄(s)}{Xi(t) − X̄(t)} =
∞∑

j=1

θ̂j ψ̂j (s)ψ̂j (t),(3)

where X̄ = n−1 ∑
i Xi and order is now determined by θ̂1 ≥ θ̂2 ≥ · · · . The eigen-

values θ̂j vanish for j ≥ n+1, so the functions ψ̂n+1, ψ̂n+2, . . . may be determined
arbitrarily.

The centered form of X admits a Karhunen–Loève expansion

X − E(X) =
∞∑

j=1

ξjψj ,(4)

where the principal components ξj = ∫
I Xψj are uncorrelated and have zero

means and respective variances θj . Their empirical counterparts are computed us-
ing ψ̂j in place of ψj .

The paper is organized as follows. In Section 2, we describe the kernel-based
estimators that we consider for estimating the nonparametric regression function g

in model (1) on the functional domain and for estimating functional derivatives
in the directions of the eigenfunctions ψj . In Section 3, rates of convergence for
kernel estimators ĝ of the nonparametric regression function g are obtained under
certain regularity assumptions on predictor processes and their spectrum (Theo-
rems 1 and 2). These results then lead to the consistency property (Theorem 3)
for functional derivatives. A case study concerning an application of functional
derivatives to the Berkeley longitudinal growth study is the theme of Section 4,
followed by a compilation of the proofs and additional results in Section 5.

2. Proposed estimation procedures. Define the Nadaraya–Watson estimator

ĝ(x) =
∑

i YiKi(x)∑
i Ki(x)

,

where Ki(x) = K(‖x − Xi‖/h), K is a kernel function and h a bandwidth. Here,
‖ · ‖ denotes the standard L2 norm. Similar kernel estimators have been suggested
in the literature. We refer to Ferraty and Vieu (2006) for an overview regarding
these proposals and also for the previously published consistency results for the
estimation of g. While the focus of this paper is on the estimation of functional
derivatives in the general framework of model (1), using the spectral decomposi-
tion for predictor processes X and characterizing these processes by their eigen-
basis also leads to useful and relevant results regarding the estimation of g. These
results are given in Theorems 1 and 2 below, while Theorem 4 provides relevant
bounds for the probability that X lies in a small ball, and Theorem 3 yields the
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desired asymptotic consistency of the proposed functional derivative estimator de-
fined at (7).

For simplicity, we shall suppose the following (although more general condi-
tions may be imposed).

ASSUMPTION 1. Kernel K is nonincreasing on [0, c], where c > 0, and the
support of K equals [0, c].

The derivative of g at x is defined to be the linear operator gx with the property
that, for functions y and scalars δ,

g(x + δy) = g(x) + δgxy + o(δ)

as δ → 0. We may write

gx =
∞∑

j=1

γxj tj ,(5)

where γxj = gxψj is a scalar, and tj denotes the operator that takes y to yj =
tj (y) = ∫

yψj . We can think of γxj as the component of gx in the direction ψj .
From knowledge of the operator gx , accessible through the components γxj ,

we can obtain information about functional gradients and extrema. For example,
suppose amin

x = (amin
x1 , amin

x2 , . . .) and amax
x = (amax

x1 , amax
x2 , . . .) are defined as the

vectors a = (a1, a2, . . .) that, respectively, minimize and maximize |gxa|, where

gxa =
∞∑

j=1

γxjaj ,(6)

over functions a = ∑
j ajψj for which ‖a‖ = 1 (i.e., such that

∑
j a2

j = 1). Then,
the function g changes fastest as we move away from x in the direction of amax

x =∑
j amax

xj ψj , which, therefore, is a gradient direction. The function changes least

when we move from x in the direction of amin
x = ∑

j amin
xj ψj . Extremal points are

characterized by γxj = 0 for all j , and their identification is of obvious interest
to identify predictor functions associated with maximal or minimal responses, and
also the level of these responses.

Thus, the components γxj are of intrinsic interest. As a prelude to estimating
them, we introduce Yi1i2 = Yi1 − Yi2 and ξ̂i1i2j = ∫

I (Xi1 − Xi2)ψ̂j , the latter being
an empirical approximation to ξi1i2j = ξi1j − ξi2j (i.e., to the difference between
the principal components ξij = ∫

Xiψj for i = i1, i2). Define

Qi1i2j = 1 − | ∫ (Xi1 − Xi2)ψ̂j |2
‖Xi1 − Xi2‖2 = 1 − ξ̂2

i1i2j

‖Xi1 − Xi2‖2 ,

which represents the proportion of the function Xi1 − Xi2 , that is, “not aligned
in the direction of ψ̂j .” Therefore, Qi1i2j will be small in cases where Xi1 − Xi2
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is close to being in the direction of ψ̂j , and will be larger in other settings. We
suggest taking

γ̂xj =
∑∑(j)

i1,i2
Yi1i2K(i1, i2, j |x)∑∑(j)

i1,i2
ξ̂i1i2jK(i1, i2, j |x)

.(7)

Here,
∑∑(j)

i1,i2
denotes summation over pairs (i1, i2) such that ξ̂i1i2j > 0,

K(i1, i2, j |x) = K

(‖x − Xi1‖
h1

)
K

(‖x − Xi2‖
h1

)
K

(
Qi1i2j

h2

)
,(8)

K is a kernel function and h1 and h2 denote bandwidths. On the right-hand side
of (8), the last factor serves to confine the estimator’s attention to pairs (i1, i2), for
which Xi1 − Xi2 is close to being in the direction of ψ̂j , and the other two factors
restrict the estimator to i1 and i2, such that both Xi1 and Xi2 are close to x. The
estimator γ̂xj uses two smoothing parameters, h1 and h2.

3. Theoretical properties.

3.1. Consistency and convergence rates of estimators of g. To ensure consis-
tency, we ask that the functional g be continuous at x (i.e., that for functions y and
scalars δ, the following holds).

ASSUMPTION 2.

sup
y : ‖y‖≤1

|g(x + δy) − g(x)| → 0 as δ ↓ 0,(9)

and the bandwidth h does not decrease to zero too slowly, in the sense that, with c

as in Assumption 1,

h = h(n) → 0 and nP (‖X − x‖ ≤ c1h) → ∞ as n → ∞,
(10)

where c1 = c if K(c) > 0, and otherwise c1 ∈ (0, c).

Given C > 0, x ∈ L2(I) and α ∈ (0,1], let G(C, x,α) denote the set of func-
tionals g such that |g(x + δy)−g(x)| ≤ Cδα , for all y ∈ L2(I) satisfying ‖y‖ ≤ 1,
and for all 0 ≤ δ ≤ 1. When deriving convergence rates, we strengthen (9) by ask-
ing that g be in G(C, x,α).

Let X = {X1, . . . ,Xn} denote the set of explanatory variables.

THEOREM 1. If Assumptions 1 and 2 hold, then ĝ(x) → g(x) in mean square,
conditional on X, and

sup
g∈G(C,x,α)

E[{ĝ(x) − g(x)}2|X] = op(1).(11)
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Furthermore, for all η > 0,

sup
g∈G(C,x,α)

P {|ĝ(x) − g(x)| > η} → 0.

Moreover, if h is chosen to decrease to zero in such a manner that

h2αP (‖X − x‖ ≤ c1h) 	 n−1(12)

as n → ∞, then, for each C > 0, the rate of convergence of ĝ(x) to g(x) equals
Op(h2α), uniformly in g ∈ G(C, x,α):

sup
g∈G(C,x,α)

E[{ĝ(x) − g(x)}2|X] = Op(h2α),(13)

lim
C1→∞ lim sup

n→∞
sup

g∈G(C,x,α)

P {|ĝ(x) − g(x)| > C1h
α} = 0.(14)

To interpret (11) and (13), assume that the pairs (Xi, εi), for 1 ≤ i < ∞, are all
defined on the same probability space, and then put Yi = Yi(g) = g(Xi)+εi . Write
Eg(·|X) to denote expectation in the distribution of the pairs (Xi, Yi(g)), condi-
tional on X. In Section 5.1 below, we shall discuss appropriateness of conditions
such as (12), which relate to “small ball probabilities.” Asymptotic consistency re-
sults for g and mean squared errors have been derived in Ferraty, Mas and Vieu
(2007) under different assumptions. The convergence rate at (14) is optimal in the
following sense.

THEOREM 2. If the error ε in (1) is normally distributed, and if, for a constant
c1 > 0, nP (‖X − x‖ ≤ c1h) → ∞ and (12) holds, then, for any estimator g̃(x) of
g(x), and for C > 0 sufficiently large in the definition of G(C, x,α), there exists a
constant C1 > 0, such that

lim sup
n→∞

sup
g∈G(C,x,α)

P {|g̃(x) − g(x)| > C1h
α} > 0.

According to this result, uniformity of the convergence holds over the Lipschitz
class of functionals G(C, x,α). This result applies for a fixed argument x in the
domain of the predictor functions, where the functionals are evaluated. Further
discussion of the bounds on P(‖X − x‖ ≤ u) as relevant for (12) is provided in
Section 5.1.

3.2. Consistency of derivative estimator. We shall establish consistency of the
estimator γ̂xj . To this end, let

q12j = 1 − | ∫ (X1 − X2)ψj |2
‖X1 − X2‖2

denote the version of Q12j when ξ̂i1i2 is replaced by the quantity ξj that ξ̂i1i2

approximates, and let ki1i2j denote the version of K(i1, i2, j |x), defined at (8),
when Qi1i2j there is replaced by qi1i2j .
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ASSUMPTION 3.

(a) supt∈I E{X(t)4} < ∞;
(b) there are no ties among the eigenvalues θ1, . . . , θj+1;
(c) |g(x + y) − g(x) − gxy| = o(‖y‖) as ‖y‖ → 0;
(d) the distribution of ξ1j − ξ2j has a well-defined density in a neighborhood of

the origin, not vanishing at the origin;
(e) K is supported on [0,1], nondecreasing and with a bounded derivative on the

positive half-line, and 0 < K(0) < ∞; and
(f) h1, h2 → 0 as n increases, sufficiently slowly to ensure that n1/2 min(h1,

h2) → ∞ and (nh1)
2E(ki1i2j ) → ∞.

Finite variance of X guarantees that the covariance operator V , leading to the
eigenfunctions ψj and their estimators ψ̂j in Section 3.1, is well defined; and finite
fourth moment, stipulated by Assumption 4(a), ensures that ‖ψ̂j − ψj‖ converges
to zero at the standard root-n rate. This assumption is, for example, satisfied for
Gaussian processes with smooth mean and covariance functions.

If we suppose, in addition, that X is a process with independent principal com-
ponent scores

∫
Xψj (or the stronger assumption that X is Gaussian) and all the

eigenvalues θj are nonzero [we shall refer to these properties jointly as (P1)], then
Assumption 3(f) implies that n−ε = O(hj ) for j = 1,2 and for all ε > 0 [call
this property (P2)]. That is, both bandwidths are of larger order than any poly-
nomial in n−1. To see why, note that (P1) entails P(‖x − X‖ ≤ h1) = O(h

C1
1 )

for all C1 > 0. Also, 3(f) implies that nh1P(‖x − X‖ ≤ C2h1) → ∞ for some
C2 > 0, and this, together with (P1), leads us to conclude that nhC1+1 → ∞ for
all C1 > 0. That result is equivalent to (P2) for the bandwidth h1. Property (P1)
also implies that P(q12j ≤ h2) = O(h

C1
2 ) for all C1 > 0, and 3(f) implies that

nP (q12j ≤ C2h2) → ∞ for some C2 > 0, which, as before, leads to (P1), this time
for the second bandwidth.

THEOREM 3. If Assumption 3 holds, then γ̂xj → γxj in probability.

Using notation (5), if e = ∑j0
j=1 ejψj with

∑
j e2

j = 1 and j0 < ∞, the func-
tional directional derivative in direction e at x is gxe = ∑

j ejγxj ; see also (6),
where e is obtained by choosing aj = ej ,1 ≤ j ≤ j0, aj = 0, j > j0. If Assump-
tion 3 holds for all j ≤ j0, it is an immediate consequence of Theorem 3 that the
estimated functional derivative ĝxe = ∑

j ej γ̂xj at x in direction e is consistent
(i.e., satisfies ĝxe → gxe in probability). As this holds uniformly over all direc-
tion vectors e, the functional gradient field for directions anchored in the span of
{ψ1, . . . ,ψj0} can be estimated consistently.

If we take the operator ĝx , defined by ĝxa = ∑
j≤r γ̂xj aj (where r ≥ 1 is an

integer and a = ∑
j ajψj is function), to be an empirical approximation to gx ,
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the operator given by gxa = ∑
j γxj aj , if the conditions in Assumption 3 hold

for each j , and in addition
∑

j γ 2
xj < ∞, then there exists a (generally unknown)

deterministic sequence r = r(n, x) with the following properties: r(n, x) → ∞ as
n → ∞; whenever ‖a‖ < ∞, ĝxa − gxa → 0 in probability; and moreover, ĝx →
gx in norm as n → ∞, where the convergence is again in probability. An explicit
construction of such a sequence r(n, x), and thus of an explicit estimate of the
derivative operator with these properties, would require further results regarding
the convergence rates for varying j in Theorem 3, and remains an open problem.

4. Application of functional derivative estimation to growth data. The
analysis of growth data has a long tradition in statistics. It played a pioneering
role in the development of functional data analysis, as evidenced by the studies of
Rao (1958), Gasser et al. (1984), Kneip and Gasser (1992), Ramsay and Li (1998)
and Gervini and Gasser (2005) and remains an active field of statistical research to
this day.

We explore the relationship between adult height, measured at age 18 (scalar
response), and the growth rate function observed to age 10 (functional predictor),
for 39 boys. Of interest is the following question: how do shape changes in the pre-
pubertal growth velocity curve relate to changes in adult height? Which changes
in the shape of a prepubertal growth velocity curve of an individual will lead to the
largest adult height gain for an individual? These and similar questions can be ad-
dressed by obtaining the functional gradient of the regression of adult height versus
the prepubertal growth velocity trajectory. Such analyses are expected to provide
us with better understanding of the intricate dynamics and regulatory processes of
human growth. Functional differentiation provides an excellent vehicle for study-
ing the effects of localized growth velocity changes during various stages of pre-
pubertal growth on adult height.

For this exploration, we use growth data for 39 boys from the Berkeley
longitudinal growth study [Tuddenham and Snyder (1954)], where we include
only measurements obtained up to age 10 for the growth velocity predictor
processes. The 15 time points before age 10 at which height measurements are
available for each boy in the Berkeley study correspond to ages {1,1.25,1.5,

1.75,2,3,4,5,6,7,8,8.5,9,9.5,10}, denoted by {sj }j=1,...,15. Raw growth rates
were calculated as first order difference quotients Xij = (hi,j+1 −hij )/(tj+1 − tj ),
where hij are the observed heights at times sj for the ith boy, and tj = (sj +
sj+1)/2, i = 1, . . . ,39, j = 1, . . . ,14. These raw data form the input for the com-
putation of the functional decomposition of the predictor processes into mean func-
tion, eigenfunctions and functional principal component scores. To obtain this de-
composition, we used an implementation of the functional spectral methods de-
scribed in Yao et al. (2003) and Yao, Müller and Wang (2005a).

Applying a BIC type criterion based on marginal pseudo-likelihood to choose
the number of components in the eigenrepresentation, three components were se-
lected. The resulting smooth estimates of fitted individual and mean growth ve-



ESTIMATION OF FUNCTIONAL DERIVATIVES 3315

FIG. 1. Fitted trajectories for individual predictor growth velocity curves (left panel) and mean
growth velocity curve (right panel) for the Berkeley growth data (n = 39).

locity curves are shown in Figure 1. The first three components explain 99.5% of
the total variation (78.9%, 17% and 3.6%, resp.), and the corresponding estimated
eigenfunctions are displayed in the left panel of Figure 2. The first eigenfunction
corresponds to a rapid initial decline in growth velocity, followed by a relatively
flat increase with onset around age 5 toward the right end of the considered age
range, while the second eigenfunction contains a sign change and provides a con-
trast between growth rates after age 2 and those before age 2. The third eigen-
function describes a midgrowth spurt around ages 6–7, coupled with an especially
rapid decline in growth rate before age 3.

To visualize the estimated functional derivatives, a derivative scores plot as
shown in the right panel of Figure 2 is of interest. The coefficient estimates for the
first two eigendirections are plotted [i.e., the points, defined at (5), (γXi,1, γXi,2),
evaluated at each of the 39 predictor functions Xi]. This figure thus represents the
canonical functional gradient vectors at the observed data points, truncated at the
first two components. These gradient vectors are seen to vary quite a bit across
subjects, with a few extreme values present in the derivative corresponding to the
first eigendirection.
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FIG. 2. Smooth estimates of the first three eigenfunctions for the velocity growth curves, explain-
ing 78.9% (solid), 17% (dashed) and 3.6% (dash-dotted) of the total variation, respectively (left
panel) and estimated functional derivative coefficients (γ̂Xi ,1, γ̂Xi ,2) (7), in the directions of the first
(x-axis) and second (y-axis) eigenfunction, evaluated at the predictor curves Xi (dots), as well as at
the mean curve μ (circle) (right panel).

The gradients are generally positive in the direction of the first eigenfunction
and negative in the direction of the second. Their interpretation is relative to the
shape of the eigenfunctions, including the selected sign for the eigenfunctions (as
the sign of the eigenfunctions is arbitrary). If the gradient is positive in the direction
of a particular eigenfunction ψj , it means that adult height tends to increase as the
corresponding functional principal component score ξj increases. So, in order to
interpret the gradients in the right panel of Figure 2, one needs to study the shapes
of the corresponding eigenfunctions as depicted in the left panel. When observing
the shapes of first and second eigenfunction in the left panel of Figure 2, adult
height is seen to increase most if the growth velocities toward the right end of the
domain of the growth rate, predictor curves are larger, a result that is in line with
what one would expect.

Using the first K components, we define functions g∗
i (t) = ∑K

j=1 γXi,jψj (t)

for each subject i. Then, for any test function z(t) = ∑K
j=1 zjψj (t) with ‖z‖ = 1,
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one has
∫

g∗
i (t)z(t) dt = ∑K

j=1 γXi,j zj , so that the functional directional derivative
at Xi in direction z is obtained through an inner product of z with g∗

i . We therefore
refer to g∗

i as the derivative generating function at Xi . In the application to growth
curves, we choose K = 3 and this function can be interpreted as a subject-specific
weight function, whose inner product with a test function z provides the gradient
of adult height when moving from the trajectory Xi in the direction indicated by z.
It is straightforward to obtain estimates

ĝ∗
i (t) =

K∑
j=1

γ̂Xi,j ψ̂j (t)(15)

of these derivative generating functions by plugging in estimates for γXi,j and
ψj(t) as obtained in (3) and (7).

Estimated derivative generating functions ĝ∗
i for K = 3 are depicted in Fig-

ure 3 for all 39 trajectories Xi in the sample. These empirical derivative generating
functions are found to be relatively homogeneous. Estimated functional directional
derivatives in any specific direction of interest are then easily obtained. We find

FIG. 3. Estimated derivative generating functions ĝ∗
i (t) (15) for all subjects Xi (black) and for the

mean function (red) of the Berkeley growth data, based on the first three eigenfunctions.
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that gradients are largest in directions z = g∗
i /‖g∗

i ‖ (i.e., in directions that are par-
allel to the derivative generating functions g∗

i ). This means that largest increases in
adult height are obtained in the presence of increased growth velocity around 2–4
years and past 8 years, while growth velocity increases between 5–7 years have
only a relatively small effect.

It is of interest to associate the behavior of the derivative operators with features
of the corresponding predictor trajectories. The predictor trajectories Xi , for which
the derivative coefficients γXi,j have the largest and smallest absolute values in
each of the first three eigendirections (for j = 1,2,3), are depicted in the upper
panels of Figure 4. The lower panels show the corresponding derivative generating
functions. One finds that the functional gradients of growth velocity curves that
contain time periods of relatively small growth velocity are such that increased
growth velocity in these time periods is associated with the largest increases in
subsequent adult height (dashed curves in left and middle panel, dotted curve in

FIG. 4. Predictor trajectories (top panels) and corresponding derivative generating functions ĝ∗
i (t)

(15) (bottom panels) which have the largest (dashed) and smallest (dotted) absolute values of deriv-
ative coefficients γ̂xj (7) in the directions of the first (j = 1, left), second (j = 2, middle) and third
(j = 3, right) eigenfunctions, as well as the mean functions (solid).
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FIG. 5. Top: predictor trajectories X(t;αj ) = μ̂(t) + αj ψ̂j (t) with αj = −2 (dashed), 0 (solid),
+2 (dotted), where j = 1,2,3 from left to right. Bottom: corresponding derivative generating func-
tions (15).

right panel), as does slowing of above-normal high post-partum growth velocities
(dashed curve in right panel).

A systematic visualization of the connection of predictor functions and the gra-
dient field, as represented by the derivative generating functions, is obtained by
considering families of predictor trajectories X(t;αj ) = μ̂(t)+αj ψ̂j (t) that move
away from the mean growth velocity trajectory in the direction of a specific eigen-
function, while the other eigenfunctions are ignored, as shown in the upper panels
of Figure 5 for the first three eigenfunctions. The corresponding derivative gen-
erating functions are in the lower panels. This visually confirms that adult height
gains are associated with increased growth velocities in those areas where a sub-
ject’s velocities are relatively low, especially toward the right end of the domain of
the velocity predictor curves.

As the sample size in this example is relatively small, it is clear that caution
needs to be exercised in the interpretation of the results of this data analysis.
The results presented here follow the spirit of exploratory data analysis. We find
that the concept of functional derivatives can lead to new insights when analyzing
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functional data which extend beyond those available when using established func-
tional methods. Many practical and theoretical issues require further study. These
include, for example, choice of window widths and the estimation of functional
derivatives for data that are irregularly or sparsely measured.

5. Additional results and proofs.

5.1. Bounds on P(‖X−x‖ ≤ u). Reflecting the infinite-dimensional nature of
functional-data regression, the rate of convergence of the “small ball probabilities”
P(‖X − x‖ ≤ u) to zero as u → 0 is generally quite rapid; in fact, it is faster than
any polynomial in u. See (19) below. In consequence, the convergence rate of ĝ(x)

to g(x) can be particularly slow. Indeed, unless the Karhunen–Loève expansion
of X is actually finite dimensional, the rate of convergence evidenced by (14) is
slower than the inverse of any polynomial in n.

The fastest rates of convergence arise when the distribution of X is closest to
being finite dimensional; for example, when the Karhunen–Loève expansion of X

can be written as X = ∑
j ξjψj , where var(ξj ) = θj and the eigenvalues θj , j ≥ 1,

decrease to zero exponentially, rather than polynomially, fast as j increases, where
the ξj are uncorrelated. Therefore, we shall focus primarily on this case and require
the following.

ASSUMPTION 4. For constants B,β > 0,

log θj = −Bjβ + o(jβ) as j → ∞,(16)

and the random variables ηj = ξj /θ
1/2
j are independent and identically distributed

as η, the distribution of which satisfies

B1u
b ≤ P(|η| ≤ u) ≤ B2u

b for all sufficiently small u > 0, and
(17)

P(|η| > u) ≤ B3(1 + u)−B4 for all u > 0, where B1, . . . ,B4, b > 0.

Take x = 0, the zero function, and, with b, B and β as in (16) and (17), define

π(u) = exp
{
− bβ

β + 1

(
2

B

)1/β

| logu|(β+1)/β

}
.(18)

THEOREM 4. If (16) and (17) hold, then, with π(u) given by (18),

P(‖X‖ ≤ u) = π(u)1+o(1) as u ↓ 0.(19)

Combining Theorems 1 and 3, we deduce that, if the eigenvalues θj decrease
as indicated at (16), if the principal components ξj have the distributional prop-
erties at (17), and if the bandwidth h is chosen so that (12) holds, then the kernel
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estimator ĝ(x) converges to g(x) at the mean-square rate of

h2α = exp(−2α| logh|)

= exp
[
−{1 + o(1)}2α

(
β + 1

bβ

)β/(β+1)(B

2

)1/(β+1)

(logn)β/(β+1)

]
.

For each fixed β , this quantity decreases to zero more slowly than any power
of n−1, although the rate of decrease increases as β increases. A typical exam-
ple where conditions (16) and (17) are satisfied is that of a process where θj =
exp(−Bjβ), where the distribution of η in Assumption 4 has a bounded nonzero
density in a neighborhood of the origin, and where {φj } is the standard Fourier
series. In this case, one finds that β = b = 1 and π(u) = exp{−c(logu)(β+1)/β} =
u−c(logu)1/β

, for some c > 0, corresponding to faster than polynomial convergence
toward 0. Of course, the condition on the distribution of η is satisfied if the process
X is Gaussian.

Theorem 4 establishes that, in the case x = 0, the probability P(‖X − x‖ ≤ u)

typically does not vanish, even for very small u, and, in this context, (19) gives a
concise account of the size of the probability. If we take x = 0 and replace X by
X1 − X2, for which the calculations leading to (19) are identical in all essential
respects to those leading to (19), then we obtain a formula for the average value
of P(‖X1 − x‖ ≤ u) over all realizations x of X2. Therefore, (19) provides sub-
stantially more than just the value of the probability when x = 0. The case of fixed
but nonzero x, where x = ∑

j θ
1/2
j xj and the xj ’s are uniformly bounded, can be

treated with related arguments, and also the setting where the xj ’s are unbounded,
although it needs more detailed arguments.

If θj decreases to zero at a polynomial rate, rather than at the exponential rate
stipulated by (16), then the probability P(‖X − x‖ ≤ u) decreases to zero at rate
exp(−C1u

−C2) as u decreases to 0, rather than at the rate exp(−C1| logu|C2) in-
dicated by Theorem 3 for constants C1,C2 > 0. Very accurate results of this type,
in the case where x = 0, are given by Gao, Hannig and Torcaso (2003), who also
provide additional relevant references. It is noteworthy that these results also per-
tain to non-Gaussian processes, while early results along these lines for Gaussian
processes can be found in Anderson and Darling (1952). Decay rates of the closely
related type uC3 exp(−C1u

−C2) for C3 > 0 were featured in Ferraty, Mas and
Vieu (2007), among several other rates that are primarily associated with finite-
dimensional processes.

We conclude from this discussion that the decay rates of the small ball probabil-
ities are intrinsically linked to the decay rates of the eigenvalues of the underlying
process. The fast decay rates associated with polynomially converging eigenvalues
mean that this case is not particularly desirable from a statistical point of view.

5.2. Proof of Theorem 1. Let σ 2 denote the variance of the error ε in (1). Set
Nj = ∑

i Ki(x)j for j = 1,2, and note that N2 ≤ K(0)N1, as K(·) is nonincreas-



3322 P. HALL, H.-G. MÜLLER AND F. YAO

ing and compactly supported on [0, c]. Therefore,

E[{ĝ(x) − g(x)}2|X]
= [E{ĝ(x)|X} − g(x)]2 + var(ĝ(x)|X)

(20)

≤ max
i=1,...,n

|g(Xi) − g(x)|I (‖Xi − x‖ ≤ ch) + σ 2 ∑
i K

2
i (x)

{∑i Ki(x)}2

≤ sup
y : ‖y‖≤ch

|g(x) − g(x + y)|2 + σ 2K(0)

N1
.

Continuity of g at x [i.e., (9)] implies that the first term on the right-hand
side of (20) converges to zero. Note that Ki(x) ≥ Ki(x)I (‖Xi − x‖ ≤ c1h) ≥
K(c1)I (‖Xi −x‖ ≤ c1h), where c1 is as in (A2). Then, (10) entails N−1

1 → 0 with
probability 1, and by monotone convergence E(N−1

i ) → 0. Together with (20),
these properties imply the first part of the theorem. The second part, comprising
(13) and (14), is obtained on noting that (20) entails

sup
g∈G(C,x,α)

E[{ĝ(x) − g(x)}2|X] ≤ C2(ch)2α + σ 2K(0)

N1

≤ C2(ch)2α + σ 2K(0){1 + op(1)}
K(c1)nP (‖X − x‖ ≤ c1h)

and E(N−1
1 ) ≤ E[{∑i I (‖Xi − x‖ ≤ c1h)}−1] 	 {nP (‖X − x‖ ≤ c1h)}−1.

5.3. Proof of Theorem 2. Without loss of generality, x = 0. Let f denote a
function defined on the real line, with a derivative bounded in absolute value by B1,
say, supported only within the interval [−B2,B2], and not vanishing everywhere.
Then, f itself must be uniformly bounded, by B3 say. Define g1 ≡ 0 and g2(y) =
hαf (‖y‖/h). If ‖y‖ ≤ h then, since 0 < α ≤ 1,

|g2(y) − g2(0)| = hα|f (‖y‖/h) − f (0)| ≤ hαB1‖y‖/h ≤ hαB1(‖y‖/h)α

= B1‖y‖α,

while, if ‖y‖ > h,

|g2(y) − g2(0)| ≤ 2hαB3 ≤ 2B3‖y‖α.

Therefore, g2 ∈ G(C,0, α) provided max(B1,2B3) ≤ C.
The theorem will follow if we show that, in a classification problem where we

observe n data generated as at (1), with the errors distributed as Normal N(0,1)

and g = g1 or g2, with prior probability 1
2 on either of these choices, the likelihood-

ratio rule fails, in the limit as n → ∞, to discriminate between g1 and g2. That is,
with Yi = εi (the result of taking g = g1 in the model), and with ρ defined by

ρ =
∏

i exp[−1/2{Yi − g1(Xi)}2]∏
i exp[−1/2{Yi − g2(Xi)}2] ,
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we should show that

P(ρ > 1) is bounded below 1 as n → ∞.(21)

Now,

2 logρ =
n∑

i=1

{g2(Xi)
2 − 2εig2(Xi)},

which, conditional on X, is normally distributed with mean s2
n = ∑

i g2(Xi)
2 and

variance 4s2
n . Therefore, (21) holds if and only if

lim
B→∞ lim sup

n→∞
P(s2

n > B) = 0(22)

and so we can complete the proof of Theorem 2 by deriving (22).
If we choose the radius B2 of the support of f so that 0 < B ≤ c1, then |g2(x)| ≤

B3h
αI (‖x‖ ≤ c1h), in which case

s2
n ≤ B2

3h2α
n∑

i=1

I (‖Xi‖ ≤ c1h).(23)

Since, by assumption, nP (‖X‖ ≤ c1h) → ∞, then∑
i I (‖Xi‖ ≤ c1h)

nP (‖X‖ ≤ c1h)
→ 1

in probability. This property, (12) and (23) together imply (22).

5.4. Proof of Theorem 3. Write, simply, Ki1i2j for K(i1, i2, j |x). Assump-
tion 3(e) implies that

Ki1i2j = 0, unless each of the following holds: ‖Xi1 − x‖ ≤ h1,
(24)

‖Xi2 − x‖ ≤ h1 and Qi1i2 ≤ h2.

Given δ > 0, let s(δ) equal the supremum of |g(x + y) − g(x) − gxy| over func-
tions y with ‖y‖ ≤ δ. Then, by Assumption 3(c),

δ−1s(δ) → 0 as δ ↓ 0.(25)

Write Ei1i2 for the event that ‖Xik − x‖ ≤ h1 for k = 1,2. If Ei1i2 holds,

|g(Xi1) − g(Xi2) − gx(Xi1 − Xi2)| ≤ 2s(h1).

Therefore, defining εi1i2 = εi1 − εi2 and assuming Ei1i2 ,

|Yi1 − Yi2 − {gx(Xi1 − Xi2) + εi1i2}| ≤ 2s(h1).
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Hence, defining ξi1i2j = ξi1j − ξi2j , noting that gx(Xi1 − Xi2) = ∑
k ξi1i2kγxk , and

using (24), we have,∣∣∣∣∣∑
(j)∑
i1,i2

(Yi1 − Yi2)Ki1i2j

−
(∑ (j)∑

i1,i2

Ki1i2j

∞∑
k=1

ξi1i2kγxk + ∑ (j)∑
i1,i2

εi1i2Ki1i2j

)∣∣∣∣∣(26)

≤ 2s(h1)
∑ (j)∑

i1,i2

Ki1i2j .

Now,

|ξ̂i1i2j − ξi1i2j | =
∣∣∣∣∫ (Xi1 − Xi2)(ψ̂j − ψj)

∣∣∣∣
(27)

≤ ‖Xi1 − Xi2‖‖ψ̂j − ψj‖ ≤ 2h1‖ψ̂j − ψj‖,
where the last inequality holds under the assumption that the event Ei1i2 obtains.
Combining (24), (26) and (27), we deduce that∣∣∣∣∣∑

(j)∑
i1,i2

(Yi1 − Yi2)Ki1i2j

−
(
γxj

∑ (j)∑
i1,i2

ξ̂i1i2jKi1i2j

(28)

+ ∑ (j)∑
i1,i2

Ki1i2j

∑
k : k �=j

ξi1i2kγxk + ∑ (j)∑
i1,i2

εi1i2Ki1i2j

)∣∣∣∣∣
≤ 2{s(h1) + |γxj |h1‖ψ̂j − ψj‖}

∑ (j)∑
i1,i2

Ki1i2j .

Note, too, that∣∣∣∣∣∑
(j)∑
i1,i2

Ki1i2j

∑
k : k �=j

ξi1i2kγxk

∣∣∣∣∣
=

∣∣∣∣∣∑
(j)∑
i1,i2

Ki1i2j

∑
k : k �=j

γxk

∫
(Xi1 − Xi2)ψk

∣∣∣∣∣
≤ ∑ (j)∑

i1,i2

Ki1i2j

( ∑
k : k �=j

γ 2
xk

)1/2[ ∑
k : k �=j

{∫
(Xi1 − Xi2)ψk

}2]1/2

(29)
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≤ ‖gx‖
∑ (j)∑

i1,i2

Ki1i2j

[
‖Xi1 − Xi2‖2 −

{∫
(Xi1 − Xi2)ψj

}2]1/2

≤ ‖gx‖
∑ (j)∑

i1,i2

Ki1i2j

[
‖Xi1 − Xi2‖2 −

{∫
(Xi1 − Xi2)ψ̂j

}2

+ 8‖ψ̂j − ψj‖‖Xi1 − Xi2‖2
]1/2

≤ 2‖gx‖h1
∑ (j)∑

i1,i2

Ki1i2j (Qi1i2j + 8‖ψ̂j − ψj‖)1/2

≤ 2‖gx‖h1(h2 + 8‖ψ̂j − ψj‖)1/2
∑ (j)∑

i1,i2

Ki1i2j .

To obtain the third-last inequality in (29), we used the fact that, with a = | ∫ (Xi1 −
Xi2)ψj |, b = | ∫ (Xi1 − Xi2)ψ̂j | and

c = ‖Xi1 − Xi2‖‖ψ̂j − ψj‖ ≤ 2‖Xi1 − Xi2‖ ≤ 4h1,(30)

where [in each of (30) and in (31) below] the last inequality is correct provided
Ei1i2 holds, we have used the fact that |a −b| ≤ c and |a| ≤ ‖Xi1 −Xi2‖ imply that

|a2 − b2| ≤ c(2a + c) ≤ 4‖ψ̂j − ψj‖‖Xi1 − Xi2‖2

(31)
≤ 8‖ψ̂j − ψj‖h2

1.

To obtain the last inequality in (29), we used (24) and the fact that Qi1i2j ≤ h2 if
Ki1i2j �= 0.

Combining (28) and (29), we find that∣∣∣∣∣∑
(j)∑
i1,i2

(Yi1 − Yi2)Ki1i2j

−
(
γxj

∑ (j)∑
i1,i2

ξ̂i1i2jKi1i2j + ∑ (j)∑
i1,i2

εi1i2Ki1i2j

)∣∣∣∣∣
(32)

≤ 2h1{h−1
1 s(h1) + |γxj |‖ψ̂j − ψj‖

+ ‖gx‖(h2 + 8‖ψ̂j − ψj‖)1/2}∑ (j)∑
i1,i2

Ki1i2j .
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Result (32) controls the numerator in the definition of γ̂xj at (7). To control the
denominator there, use (27) to show that

∑ (j)∑
i1,i2

ξ̂i1i2jKi1i2j ≥ ∑ (j)∑
i1,i2

max(0, ξi1j − ξi2j − 2h1‖ψ̂j − ψj‖)Ki1i2j

≥ ∑ (j)∑
i1,i2

max(0, ξi1j − ξi2j )Ki1i2j(33)

− 2h1‖ψ̂j − ψj‖
∑ (j)∑

i1,i2

Ki1i2j .

[Recall that
∑∑(j)

i1,i2
denotes summation over (i1, i2) such that ξ̂i1i2j > 0.] Using

Assumption 4(d), (e) and (f), it can be proved that, for a constant B > 0,

∑ (j)∑
i1,i2

max(0, ξi1j − ξi2j )Ki1i2j ≥ {1 + op(1)}Bh1
∑ (j)∑

i1,i2

Ki1i2j .(34)

[Note that, by Assumption 3(f), n−1/2/min(h1, h2) → 0.] From Assumption 3(a)
and (b), it follows that

‖ψ̂j − ψj‖ = Op(n−1/2).(35)

Together, (33)–(35) imply that

∑ (j)∑
i1,i2

ξ̂i1i2jKi1i2j ≥ {1 + op(1)}Bh1
∑ (j)∑

i1,i2

Ki1i2j(36)

for the same constant B as in (34). This result controls the denominator at (7).
From (7), (25), (32) and (36), we deduce that

γ̂xj = γxj + Op

(∑∑(j)
i1,i2

εi1i2Ki1i2j

h1
∑∑(j)

i1,i2
Ki1i2j

)
+ op(1).(37)

The variance of the ratio on the right-hand side of (37), conditional on the explana-
tory variables Xi , equals

Op

{(
h2

1

∑ (j)∑
i1,i2

Ki1i2j

)−1}
= Op[{(nh1)

2E(ki1i2j )}−1] = op(1),

where, to obtain the last identity, we used Assumption 3(f). Therefore, (37) implies
that γ̂xj = γxj + op(1), which proves Theorem 3.
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5.5. Proof of Theorem 4. Observe that, for each t ∈ (0,1) and with Dt =
(
∑

j θ1−t
j )−1,

P(‖X‖ ≤ u) = P

( ∞∑
j=1

θjη
2
j ≤ u2

)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
≤

∞∏
j=1

P(θjη
2
j ≤ u2),

≥
∞∏

j=1

P(θt
j η

2
j ≤ Dtu

2),

(38)

where, to obtain the lower bound, we used the property

P

( ∞∑
j=1

θjη
2
j ≤ u2

)
= P

{ ∞∑
j=1

θ1−t
j (θ t

j η
2
j − Dtu

2) ≤ 0

}

≥ P(θt
j η

2
j ≤ Dtu

2 for each j).

Define J = J (u) to be the largest integer such that u/θ
1/2
j ≤ ζ , where ζ is

chosen so small that B1u
b ≤ P(|η| ≤ u) ≤ B2u

b for 0 ≤ u ≤ ζ . Then,

∞∏
j=1

P(θjη
2
j ≤ u2) ≤

J∏
j=1

P(|η| ≤ uθ
−1/2
j )

= ubJ exp

{
1

2
bB

J∑
j=1

jβ + o(J β+1)

}
(39)

= exp
{
− bBβ

2(β + 1)
J β+1 + o(J β+1)

}
= π(u)1+o(1)

as u ↓ 0, where π is defined at (18).
Redefine J to be the largest integer such that D

1/2
t u/θ

t/2
j ≤ ζ . Then, using the

argument leading to (39), we may show that

J∏
j=1

P(θt
j η

2
j ≤ Dtu

2)

= exp
{
− bβ

β + 1

(
2

Bt

)1/β

| logu|(β+1)/β + o
(| logu|(β+1)/β)}

(40)

= π(u)t
−1/β+o(1).

Also, for j ≥ J + 1,

πj ≡ P(θt
j η

2
j > Dtu

2) ≤ B3{1 + (D
1/2
t u/θ

t/2
j )}−B4 .(41)
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Note, too, that, for a constant B5 = B5(t) ∈ (0,1), we have πj ∈ (0,B5) for j ≥
J + 1, and

1 − πj = exp

(
−

∞∑
k=1

πk
j

k

)
≥ exp(−B6πj )

from which it follows that
∞∏

j=J+1

(1 − πj ) ≥ exp

(
−B6

∞∑
j=J+1

πj

)
≥ exp

{
−B7

∞∑
j=J+1

(θ
t/2
j /u)B4

}
,

which is of smaller order than the right-hand side of (40). Combining this result
with (40), and noting that t ∈ (0,1) on the right-hand side of (40), can be taken
arbitrarily close to 1, we deduce that, as u ↓ 0,

∞∏
j=1

P(θt
j η

2
j ≤ Dtu

2) = π(u)1+o(1).(42)

Together, (38), (39) and (42) imply (19).

Acknowledgments. We wish to thank an Associate Editor and two referees
for helpful comments.

REFERENCES

ANDERSON, T. and DARLING, D. (1952). Asymptotic theory of certain “goodness of fit” criteria
based on stochastic processes. Ann. Math. Statistics 23 193–212. MR0050238

CARDOT, H., FERRATY, F., MAS, A. and SARDA, P. (2003). Testing hypotheses in the functional
linear model. Scand. J. Statist. 30 241–255. MR1965105

CARDOT, H., FERRATY, F. and SARDA, P. (2003). Spline estimators for the functional linear model.
Statist. Sinica 13 571–591. MR1997162

CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2002). Linear functional regression: The case of
fixed design and functional response. Canad. J. Statist. 30 285–300. MR1926066

FERRATY, F., MAS, A. and VIEU, P. (2007). Nonparametric regression on functional data: Inference
and practical aspects. Aust. N. Z. J. Stat. 49 459–461. MR2396496

FERRATY, F. and VIEU, P. (2003). Curves discrimination: A nonparametric functional approach.
Comput. Statist. Data Anal. 44 161–173. MR2020144

FERRATY, F. and VIEU, P. (2004). Nonparametric models for functional data, with application in
regression, time-series prediction and curve discrimination. J. Nonparametr. Stat. 16 111–125.
MR2053065

FERRATY, F. and VIEU, P. (2006). Nonparametric Functional Data Analysis. Springer, New York.
MR2229687

GASSER, T., HALL, P. and PRESNELL, B. (1998). Nonparametric estimation of the mode of a dis-
tribution of random curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 681–691. MR1649539

GASSER, T., KÖHLER, W., MÜLLER, H.-G., KNEIP, A., LARGO, R., MOLINARI, L. and PRADER,
A. (1984). Velocity and acceleration of height growth using kernel estimation. Annals of Human
Biology 11 397–411.

GAO, F., HANNIG, J. and TORCASO, F. (2003). Comparison theorems for small deviations of ran-
dom series. Electron. J. Probab. 8 17pp. MR2041822

http://www.ams.org/mathscinet-getitem?mr=0050238
http://www.ams.org/mathscinet-getitem?mr=1965105
http://www.ams.org/mathscinet-getitem?mr=1997162
http://www.ams.org/mathscinet-getitem?mr=1926066
http://www.ams.org/mathscinet-getitem?mr=2396496
http://www.ams.org/mathscinet-getitem?mr=2020144
http://www.ams.org/mathscinet-getitem?mr=2053065
http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=1649539
http://www.ams.org/mathscinet-getitem?mr=2041822


ESTIMATION OF FUNCTIONAL DERIVATIVES 3329

GERVINI, D. and GASSER, T. (2005). Nonparametric maximum likelihood estimation of the struc-
tural mean of a sample of curves. Biometrika 92 801–820. MR2234187

HALL, P. and HECKMAN, N. E. (2002). Estimating and depicting the structure of a distribution of
random functions. Biometrika 89 145–158. MR1888371

HALL, P. and HOROWITZ, J. L. (2007). Methodology and convergence rates for functional linear
regression. Ann. Statist. 35 70–91. MR2332269

JAMES, G. and SILVERMAN, B. (2005). Functional adaptive model estimation. J. Amer. Statist.
Assoc. 100 565–576. MR2160560

KNEIP, A. and GASSER, T. (1992). Statistical tools to analyze data representing a sample of curves.
Ann. Statist. 20 1266–1305. MR1186250

RAMSAY, J. O. and DALZELL, C. J. (1991). Some tools for functional data analysis (with discus-
sion). J. Roy. Statist. Soc. Ser. B 53 539–572. MR1125714

RAMSAY, J. O. and LI, X. (1998). Curve registration. J. R. Stat. Soc. Ser. B Stat. Methodol. 60
351–363. MR1616045

RAMSAY, J. O. and SILVERMAN, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New
York. MR2168993

RAO, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics 14 1–17.
TUDDENHAM, R. and SNYDER, M. (1954). Physical growth of California boys and girls from birth

to age 18. Calif. Publ. Child Develop. 1 183–364.
YAO, F., MÜLLER, H.-G., CLIFFORD, A. J., DUEKER, S. R., FOLLETT, J., LIN, Y., BUCHHOLZ,

B. A. and VOGEL, J. S. (2003). Shrinkage estimation for functional principal component scores
with application to the population kinetics of plasma folate. Biometrics 59 676–685. MR2004273

YAO, F., MÜLLER, H.-G. and WANG, J.-L. (2005a). Functional data analysis for sparse longitudinal
data. J. Amer. Statist. Assoc. 100 577–590. MR2160561

YAO, F., MÜLLER, H.-G. and WANG, J.-L. (2005b). Functional linear regression analysis for lon-
gitudinal data. Ann. Statist. 33 2873–2903. MR2253106

P. HALL

DEPARTMENT OF MATHEMATICS

AND STATISTICS

UNIVERSITY OF MELBOURNE

PARKVILLE, VIC, 3010
AUSTRALIA

H.-G. MÜLLER

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA

ONE SHIELDS AVENUE

DAVIS, CALIFORNIA 95616
USA
E-MAIL: mueller@wald.ucdavis.edu

F. YAO

DEPARTMENT OF STATISTICS

UNIVERSITY OF TORONTO

100 SAINT GEORGE STREET

TORONTO, ONTARIO M5S3G3
CANADA

http://www.ams.org/mathscinet-getitem?mr=2234187
http://www.ams.org/mathscinet-getitem?mr=1888371
http://www.ams.org/mathscinet-getitem?mr=2332269
http://www.ams.org/mathscinet-getitem?mr=2160560
http://www.ams.org/mathscinet-getitem?mr=1186250
http://www.ams.org/mathscinet-getitem?mr=1125714
http://www.ams.org/mathscinet-getitem?mr=1616045
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=2004273
http://www.ams.org/mathscinet-getitem?mr=2160561
http://www.ams.org/mathscinet-getitem?mr=2253106
mailto:mueller@wald.ucdavis.edu

	Introduction
	Proposed estimation procedures
	Theoretical properties
	Consistency and convergence rates of estimators of g
	Consistency of derivative estimator

	Application of functional derivative estimation to growth data
	Additional results and proofs
	Bounds on P(||X-x||<=u)
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Acknowledgments
	References
	Author's Addresses

