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Summary. We present the application of a nonparametric method to performing functional principal
component analysis for functional curve data that consist of measurements of a random trajectory for a
sample of subjects. This design typically consists of an irregular grid of time points on which repeated
measurements are taken for a number of subjects. We introduce shrinkage estimates for the functional
principal component scores that serve as the random effects in the model. Scatterplot smoothing methods
are used to estimate the mean function and covariance surface of this model. We propose improved estimation
in the neighborhood of and at the diagonal of the covariance surface, where the measurement errors are
reflected. The presence of additive measurement errors motivates shrinkage estimates for the functional
principal component scores. Shrinkage estimates are developed through best linear prediction and in a
generalized version, aiming at minimizing one-curve-leave-out prediction error. The estimation of individual
trajectories combines data obtained from that individual as well as all other individuals. We apply our
methods to new data regarding the analysis of the level of 14C-folate in plasma as a function of time since
dosing of healthy adults with a small tracer dose of 14C-folic acid. A time transformation was incorporated to
handle design irregularity concerning the time points on which the measurements were taken. The proposed
methodology, incorporating shrinkage and data-adaptive features, is seen to be well suited for describing
population kinetics of 14C-folate-specific activity and random effects, and can also be applied to other
functional data analysis problems.

Key words: Covariance; Cross-validation; Eigenfunctions; Functional data; Measurement error; Pharma-
cokinetics; Random effects; Repeated measurements; Smoothing.

1. Introduction
We develop a version of functional principal component
(FPC) analysis that includes shrinkage of the FPC scores as
a means of handling measurement errors and improving the
prediction error of the representation of individual trajecto-
ries in functional principal component analysis. We apply the
new methodology to analyze the kinetics of the appearance
and disappearance of 14C-folate in plasma of healthy adults
who were given a small tracer dose of 14C-folic acid per os.
Folate is an important vitamin, folate deficiency in pregnant
mothers being associated with increased risk for spina bifida
and with other disorders, and its plasma kinetics is of interest
in nutritional research.

Since a parametric model will only find features in the data
that are already incorporated a priori in the model, paramet-
ric approaches might be not adequate if, as is the case in our
application, the time courses are not well defined and do not
fall into a preconceived class of functions. In such situations,
an exploratory analysis through nonparametric methods is
advisable. There has been increasing interest in the nonpara-

metric analysis of data that are in the form of samples of
curves or trajectories (“functional data analysis”; see, e.g.,
Ramsay and Silverman (1997)).

Smoothing methods for analyzing functional data have
been applied to detect new features in growth curves (Gasser
et al., 1984). Substantial work has been done to model lon-
gitudinal data nonparametrically by estimating the eigen-
functions corresponding to the covariance function of a ran-
dom curve (Berkey and Kent, 1983; Besse and Ramsay, 1986;
Castro, Lawton, and Sylvestre, 1986; Rice and Silverman,
1991; Silverman, 1996), for situations where continuous sam-
ple curves are observed. Functional principal component anal-
ysis (FPCA) attempts to find the dominant modes of vari-
ation around an overall trend function, and is thus a key
technique in functional data analysis. In previous work, the
FPC scores, which are a key feature in the Karhunen-Loève
representation of random trajectories, were obtained as ap-
proximations to the integrals of the defining scalar products.
We propose here a more general approach through shrinkage
estimation.
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The main contributions of this article are, first, the pro-
posed shrinkage estimates of the FPC scores, which improve
upon the estimates obtained by the integration method, espe-
cially when the measurements are contaminated with noise,
as is usually the case in practical applications. A consequence
is improved prediction of individual trajectories. Second, we
demonstrate with a new data set, consisting of a sample of
longitudinal measurements on the kinetics of plasma folate,
the usefulness of these methods for biostatistical data.

Our approach is related to that of Staniswalis and Lee
(1998), who also used scatterplot smoothing to obtain mean
and covariance functions, and proposed modifications to al-
low for additional measurement errors. We also propose an
improved estimate for the variance of these errors through
improved estimation in the neighborhood of and at the di-
agonal of the covariance surface, by fitting local quadratic
components along the direction perpendicular to the diag-
onal. In practice, smoothing the covariance surface guaran-
tees a symmetric but not always nonnegative-definite esti-
mate. We implement a simple modification where we neglect
the negative eigenvalues and corresponding eigenfunctions
to obtain a nonnegative-definite estimate of the covariance,
without changing the main characteristics of the covariance
estimate. We use one-curve-leave-out cross-validation for
choosing such auxiliary parameters as the degree of smooth-
ing and the model dimension, corresponding to the number
of eigenfunctions to be included, similar to a proposal of Rice
and Silverman (1991).

In our application, the time courses of 14C-folate in plasma
were recorded for 13 healthy adults that were administered
a small oral dose of 14C-folic acid (80 nmol, 100 nCi). Use
of labeled nutrients and drugs is common in nutritional and
pharmacologic research, because it provides the only realistic
way of tracking their overall fate in the body in an appropriate
time frame. The time courses of plasma folate of these thirteen
subjects are unknown a priori; this motivates the use of non-
parametric methods for exploratory analysis. The numbers
and locations of the time points on which measurements are
available are irregular for these 13 subjects. Measurements are
very dense during the first day, and then become increasingly
sparse. This motivates a preprocessing step that consists of a
time transformation. We found that a square-root logarithm
transformation of time (days) is appropriate.

The remainder of the article is organized as follows: In
Section 2, we present the FPCA model incorporating mea-
surement errors. Section 3 contains a description of the esti-
mation of the mean, covariance surface, and eigenfunctions.
The proposed shrinkage estimates for the FPC scores are dis-
cussed in Section 4. A simulation study is included in Section
5, to demonstrate the performance of the proposed methods.
The application to longitudinal folate data is described in
Section 6, and concluding remarks are given in Section 7.

2. Modeling Trajectories through Functional
Principal Components

We model the sample curves or trajectories as indepen-
dent realizations of a stochastic process X(t) that has mean
E{X(t)} = µ(t) and covariance function cov{X(s), X(t)} =
G(s, t). We assume that there is an orthogonal expansion (in
the L2 sense) of G in terms of eigenfunctions φk and nonin-

creasing eigenvalues λk:

G(s, t) =
∑
k

λkφk(s)φk(t), t, s ∈ [0, T ], (1)

where [0, T ] is the time range of the measurements. The classi-
cal FPCA model assumes that the ith random curve from the
population can be expressed in a model without additional
measurement errors by

Xi(t) = µ(t) +
∑
k

ξikφk(t), t ∈ [0, T ], i = 1, . . . , N, (2)

where the ξik are uncorrelated random variables with zero
mean and variances E(ξ2

ik) = λk, with
∑

k
λk < ∞. The de-

viation of each sample curve from the mean is thus a sum of
orthogonal curves with uncorrelated random amplitudes. We
shall suppose that the mean curve and the first few eigenfunc-
tions are smooth functions.

Often it is realistic to incorporate uncorrelated measure-
ment errors with mean zero and constant variance σ2 into the
model, reflecting additional variation in the measurements;
see Rice and Wu (2000). Let Yij be the observations of the
random function Xi (·) at time points tij , and εij additional
measurement errors that are assumed to be i.i.d. and inde-
pendent of the random coefficients ξik, i = 1, . . . , N , j =
1, . . . ,ni , i.e.,

Yij = Xi(tij) + εij = µ(tij)

+

∞∑
k=1

ξikφk(tij) + εij , 0 ≤ tij ≤ T, (3)

where E(εij) = 0, var(εij) = σ2. In special cases, one might
assume, in addition, that the ξik, εij are all jointly normally
distributed, but we do not make this assumption except where
explicitly noted.

3. Estimating the Components of the Model
3.1 Estimation of the Mean and Covariance Functions
In the functional context, it is appropriate to assume that the
mean function µ(t) is a smooth curve. We use local weighted
polynomial smoothing (Fan and Gijbels, 1996), fitting local
lines, to estimate µ based on the pooled data from all individ-
ual curves. In practice, it is often satisfactory to choose the
smoothing bandwidth subjectively, but data-adaptive meth-
ods are available; for example, see Müller and Prewitt (1993)
for surface smoothing and Rice and Silverman (1991) for one-
curve-leave-out cross-validation. In this method, one mini-
mizes the cross-validation score with respect to the bandwidth
b, given by CV(b) =

∑N

i=1

∑ni

j=1{Yij − µ̂(−i)(tij ; b)}2/N , where

µ̂(−i) is the estimate of µ after removing the data of the ith
subject, using bandwidth b. For issues of smoothing depen-
dent data, compare Lin and Carroll (2000).

We apply two-dimensional scatterplot smoothing, based
on local weighted linear smoothing and fitting local planes,
to the data. Note that in model (3), cov(Yij ,Yil ) =
cov{X(tij ),X(til )} + σ2δjl, where δjl is 1 if j = l and 0
otherwise. Let Ci(tij , til) = {Yij − µ̂(tij)}{Yil − µ̂(til)} be the
raw covariances, where µ̂(t) is the estimated mean func-
tion obtained from the previous step. It is easy to see that
E{Ci(tij , til )} ≈ cov{X(tij ), X(til )} + σ2δjl. Therefore, the
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diagonal of the raw covariances should be removed, i.e.,
only Ci(tij , til ), j 
= l, should be included as predictors in
the smoothing step (Staniswalis and Lee, 1998). We again
use one-curve-leave-out cross-validation, minimizing CV(h) =∑N

i=1

∑
j 
=l

{Ci(tij , til) − Ĝ(−i)(tij , til;h)}2/N , to choose the
smoothing parameter h in the surface smoothing step. Here
Ĝ(−i)(s, t;h) is the smoothed covariance function obtained by
removing the ith individual curve, using bandwidth h.

We note that the estimate Ĝ(s, t) will always be symmet-
ric if a symmetric weight function is used in the local lin-
ear smoothers, but not necessarily nonnegative-definite for
finite samples, as local linear smoothers may assign negative
weights in some local windows. We implement a simple modi-
fication by ignoring negative estimates of eigenvalues and the
corresponding eigenfunctions in the usual expansion of the co-
variance function into eigenvalues/eigenfunctions. In this way,
one obtains an estimate that is guaranteed to be nonnegative-
definite, without changing the characteristics of the co-
variance estimate for larger sample sizes, where estimated
eigenvalues are closer to the nonnegative true eigenvalues.

The variance σ2 of measurement errors is of special interest
for our proposed shrinkage estimates. Since the covariance of
X(t) is maximal along the diagonal, we expect that the shape
of the surface in the direction orthogonal to the diagonal can
be better approximated by a local quadratic rather than a
local linear fit. Indeed, we found that the standard fitting of
local planes around the diagonal leads to overestimation of σ2.
To improve the estimation in the neighborhood of and at the
diagonal, we fit a local quadratic component along the direc-
tion perpendicular to the diagonal, and a local linear compo-
nent in the direction of the diagonal; implementation of this
local smoother is achieved easily by rotating the coordinates
by 45◦.

Prior to this smoothing step, the diagonal elements of the
raw covariances, that is, Ci (tij , tij ), i = 1, . . . ,N , j = 1, . . . ,ni ,
are removed. Denote the diagonal of the resulting surface es-
timate by G̃(t). An estimate V̂ (t) of {G(t, t) + σ2} is then
obtained in a second local weighted linear smoothing step,
applied to the scatterplot {tij , Ci (tij , tij )} with pooled raw
variances Ci (tij , tij ), i = 1, . . . ,N , j = 1, . . . ,ni . To mitigate
against boundary effects, we cut off the two ends of the in-
terval to get a more stable estimate, following a suggestion
of Staniswalis and Lee (1998). The resulting estimate of σ2,
adjusted to avoid the possibility of negative estimates, is

σ̂2 =
2

T

∫ 3T/4

T/4

{V̂ (t) − G̃(t)} dt, (4)

if σ̂2 > 0 and σ̂2 = 0 otherwise.

3.2 Estimating the Eigenfunctions and Eigenvalues
The estimates of eigenfunctions and eigenvalues corre-
spond to the solutions φ̂k and λ̂k of the eigenequa-

tions,
∫ T

0 Ĝ(s, t)φ̂k(s) ds = λ̂kφ̂k(t), where φ̂k are subject to∫ T

0 φ̂k(t)
2 dt = 1 and

∫ T

0 φ̂k(t)φ̂m(t) dt = 0 for m < k. We
estimate the eigenfunctions by discretizing the smoothed
covariance, as previously described in Rice and Silverman
(1991) and Capra and Müller (1997). The FPC scores ξik =∫
{Xi(t) − µ(t)}φk(t) dt have traditionally been estimated by

numerical integration. However, the presence of additional

contaminating errors, which are pervasive in practice, mo-
tivates shrinkage estimates for the FPC scores ξik that have
not yet been considered. Since the Yij are only available at
discrete times tij , the integrals in the definition of the FPC
scores ξik are usually approximated by sums, substituting Yij ,
as defined in (3), for Xi (tij ).

For notational convenience, we define Yi (t) as a step func-
tion with jumps at midpoints between neighboring tij , using
Yij as the size of the steps, and analogously for εi(t). Set

X̃i(t) = Yi(t) − εi(t), and let ξ̃ik =
∫ T

0 {X̃i(t) − µ(t)}φk(t) dt
be the discrete version of the FPC scores ξik. Since nei-
ther Xi nor X̃i is available, due to the contaminating errors

εi, we instead consider the approximations ηik =
∫ T

0 {Yi(t) −
µ(t)}φk(t) dt. In practice, µ and φk are also unknown and
must be estimated from the data. It is common practice, using
estimates µ̂(tij) for µ(tij ) and φ̂k(tij) for φk(tij ), to estimate
ηik by approximating sums, letting ti0 = 0,

η̂ik =

∫ T

0

{Yi(t) − µ̂(t)}φ̂k(t) dt

≈
ni∑
j=1

{Yij − µ̂(tij)}φ̂k(tij)(tij − ti,j−1). (5)

To choose the number of principal component curves
that will provide a reasonable approximation to the infinite-
dimensional process, we use the cross-validation score based
on the one-curve-leave-out prediction error. Let µ̂

(−i)
i and φ̂

(−i)
k

be the estimated mean function and eigenfunctions, respec-
tively, after removing the ith individual’s curve. Then, we
choose the number of components K to be included in the
model so as to minimize the cross-validation scores

CV(K) =
1

N

N∑
i=1

∥∥Yi − Ŷ
(−i)
i

∥∥2
, (6)

where ‖ · ‖ here and in the following is defined by ap-

proximating the usual L2 distance through ‖Yi − Ŷ
(−i)
i ‖2 =∑ni

j=1{Yij − Ŷ
(−i)
i (tij)}2(tij − ti,j−1). Note that Ŷ

(−i)
i is the

predicted curve for the ith subject after removing this sam-
ple curve from fitting model (3), i.e., Ŷ

(−i)
i (t) = µ̂(−i)(t) +∑K

k=1 η̂
(−i)
ik φ̂

(−i)
k (t).

4. Shrinkage Estimation of Functional Principal
Component Scores

We reconsider the estimation of the functional principal com-

ponents in model (3). Setting ε̃ik =
∫ T

0 εi(t)φk(t) dt, we note

that ηik = ξ̃ik + ε̃ik. We conclude that the best linear predic-
tors of the approximate FPC scores ξ̃ik are not given by ηik,
but rather by

λ̃k

λ̃k + var(ε̃ik)
ηik, (7)

where λ̃k = var(ξ̃ik). This is a shrinkage formula, moving ηik

closer towards the origin, whenever var(ε̃ik) > 0. If we as-
sume that ξik and εij and also that the discrete versions ξ̃ik
and ε̃ik are independent and jointly Gaussian, the best pre-
dictors of the approximate FPC scores ξ̃ik are E(ξ̃ik | ηik) =
λ̃kηik/{λ̃k + var(ε̃ik)}, corresponding to predictors (7). The
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variation of the shrinkage estimators is reduced, ob-
serving that var(ηik)=var{E(ξ̃ik | ηik)}+E{var(ξ̃ik | ηik)} >
var{E(ξ̃ik | ηik)}, if E{var(ξ̃ik | ηik)} > 0.

The quantities ε̃ik can be approximated by the sums∑ni

j=1 εijφk(tij)(tij − ti,j−1). Note that var(ξ̃ik) ≈ σ2
∑ni

j=1 φ
2
k

× (tij)(tij − ti,j−1)
2, and if the number and density of mea-

surements are sufficiently large, var(ε̃ik) can be approximated
by Tσ2/ni , where ni is the number of repeated measurements
for the ith subject. A reasonable estimate of the shrinkage
factor (7) is therefore

ξ̂ik =
λ̂k

λ̂k + Tσ̂2/ni

η̂ik, (8)

where σ̂2 is the sample variance estimate obtained from (4),
λ̂k is the estimated kth eigenvalue, and η̂ik is the raw sam-
ple estimate for the kth FPC score of the ith individual given
in (5). In what follows, we refer to (8) as Gaussian shrink-
age, since it provides the appropriate shrinkage factor for the
Gaussian case.

Since the presence of additional measurement errors is a
main motivation of shrinkage estimation, stochastic variation
in estimating the variance of the measurement errors can be
expected to have an impact on the shrinkage estimates. Ne-
glecting the variation in the estimation of eigenvalues λk, we
note that the shrinkage factor λ/{λ + (Tσ2/ni )} is a convex
function of σ2. Assume a multiplicative error model for the
behavior of the variance estimate σ̂2, σ̂2 = εE(σ̂2), where ε >
0 is a r.v. with E(ε) = 1. Then, the targeted shrinkage fac-
tor is λ/[λ + {TE(σ̂2)/ni}], and from Jensen’s inequality, we
have

E

{
λ

/(
λ +

Tσ̂2

ni

)}
> λ

/(
λ +

TE(σ̂2)

ni

)
. (9)

We see from (9) that the appropriate shrinkage factor
is smaller than that given by (8), on the average, un-
der reasonable assumptions about randomness in the error
variance. This observation motivates a generalized shrink-
age method, where we replace the Gaussian shrinkage
factor λ/{λ+(Tσ2/ni )} by a generalized shrinkage factor
λ/{λ+(ρ/ni )} for an unknown ρ. To achieve the target
λ/[λ + {TE(σ̂2)/ni}] in the random error variance, we see that
ρ should be greater than Tσ̂2 on average, which means more
shrinkage is needed than provided by the Gaussian shrinkage
method.

A second motivation for the generalized shrinkage method
is minimization of the squared prediction error over a class
of linear shrinkage factors. Let X̂i(ρ) be the prediction for
the true process Xi obtained by using the linear shrink-
age estimates ξ̂ik = λ̂kη̂ik/{λ̂k + (ρ/ni)}. The orthonormal-
ity of the eigenfunctions (analogous to the derivation of
Parseval’s equality; see Courant and Hilbert (1953)) leads
to ‖X̂i(ρ) −Xi‖2 =

∑
k
[λ̂kη̂ik/{λ̂k + (ρ/ni)} − ξik]

2. Setting

Z(ρ) = 1/N
∑N

i=1 ‖X̂i(ρ) −Xi‖2, f(Z) = minρZ(ρ), the best
linear predictor property of Gaussian shrinkage implies that
ρ = Tσ̂2 is an approximate minimizer of E{Z(ρ)}. Due to the
concavity of f, using Jensen’s inequality, we find that

E{min
ρ

Z(ρ)} ≤ min
ρ

E{Z(ρ)} ≈ E{Z(Tσ̂2)}. (10)

Therefore, on average, generalized shrinkage which corre-
sponds to minimizing Z(ρ) leads to an improved estimate as
compared to Gaussian shrinkage. For large sample sizes, Z(ρ)
will be closer to E{Z(ρ)} and therefore the relative gain of
generalized over Gaussian shrinkage is predicted to be more
pronounced for smaller samples by this argument. Indeed, this
is what we found in simulations (Section 5).

The initial form of the generalized shrinkage formula is
therefore given by ξ̂ik = [λ̂k/{λ̂k + (ρ/ni)}]η̂ik, where ρ > 0
is an unspecified shrinkage parameter. We note that Gaussian
shrinkage (8) is a special case with ρ = Tσ̂2. The generalized
shrinkage parameter ρ is chosen to minimize the estimated
prediction error, where the estimated prediction error is ob-
tained by one-curve-leave-out cross-validation. Let Ŷ

(−i)
i (·, ρ)

be the predicted curve for the ith subject, using shrinkage pa-
rameter ρ and removing the data of the ith subject. We then
minimize the cross-validated integrated prediction error, with
respect to ρ ≥ 0, to obtain

ρ̂ = arg min
ρ≥0

1

N

N∑
i=1

∥∥Yi − Ŷ
(−i)
i (ρ)

∥∥2
, (11)

leading to the generalized shrinkage formula

ξ̂ik =
λ̂k

λ̂k + ρ̂/ni

η̂ik. (12)

The generalized shrinkage method leads to the best possible
shrinkage estimates in this class, in terms of prediction error.
Thus, in general, it will lead to improvements over Gaussian
shrinkage (8), according to (10). Gaussian shrinkage in turn
leads to improvements over the customary FPC scores η̂ik,
which are motivated by approximating the integrals that de-
fine the FPC scores (see Section 3.2). The customary FPC
scores η̂ik will nearly always overestimate the FPC scores that
are optimal for prediction. Gaussian shrinkage, while improv-
ing on this situation, often will not produce enough shrinkage,
especially in small sample situations.

5. Simulation Results
To illustrate the advantage of shrinkage estimation of FPC
scores compared to customary estimation without shrinkage,
we devised a simulation study, using 100 i.i.d. normal and 100
i.i.d nonnormal samples consisting of N = 10, 20, and 50 ran-
dom trajectories. The data were generated following model
(3). The simulated process had mean function µ(t) = t+
sin(2πt), 0 ≤ t ≤ 1. We construct the covariance function of
the process according to (1) from two orthonormal functions
φ1(t) = −21/2 cos(πt) and φ2(t) = 21/2 sin(πt), 0 ≤ t ≤ 1. For
the ith partially observed path in a single sample, the num-
ber of observations, ni , was randomly chosen to be between
30 to 40. For an equally spaced grid {c1, . . . , cni

} on [0, 1] with
c1 =0, cni

=1, d=1/(ni−1), the tij were uniform on [cj − d/2,
cj + d/2], for j =2, . . . ,ni − 1, ti1 uniform on [0, d/2], and tini

uniform on [1− d/2, 1], allowing for nonequidistant “jittered”
designs. We chose λ1 =2 and λ2 =1 as the eigenvalues, λk =0,
j ≥ 3, and σ2 =0.25 as the variance of the additional mea-
surement errors εij in (3), which were assumed to be normal
with mean 0. Note that T=1.
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Table 1
Results of 100 Monte Carlo runs with N =10, 20, and 50 trajectories per sample. Shown are averages of estimates ρ = σ̂2 (4)
for Gaussian (8) and of estimates ρ = ρ̂ (11) for generalized (12) shrinkage, cross-validation scores (11), squared prediction

errors (13) and average squared errors for the two functional principal component scores ξ1 and ξ2.

Normal Mixture
Model

Sample shrinkage Gaussian Generalized Gaussian Generalized
size type None (ρ = σ̂2) (ρ = ρ̂) None (ρ = σ̂2) (ρ = ρ̂)

True σ2 — 0.250 — — 0.250 —
Ave. ρ — 0.273 0.945 — 0.271 1.34
Ave. CV 1.35 1.24 1.19 1.32 1.26 1.16

N =10 Ave. SPE 0.971 0.909 0.873 0.964 0.908 0.862
ASE(ξ1) 0.386 0.361 0.354 0.371 0.353 0.338
ASE(ξ2) 0.442 0.414 0.398 0.453 0.438 0.409
Ave. ρ — 0.261 0.881 — 0.267 1.15
Ave. CV 1.14 1.06 1.03 1.12 1.04 0.985

N =20 Ave. SPE 0.866 0.814 0.793 0.910 0.876 0.831
ASE(ξ1) 0.352 0.334 0.327 0.336 0.328 0.315
ASE(ξ2) 0.417 0.396 0.389 0.425 0.409 0.384
Ave. ρ — 0.257 0.421 — 0.259 0.578
Ave. CV 0.961 0.893 0.887 0.948 0.887 0.875

N =50 Ave. SPE 0.812 0.767 0.762 0.830 0.781 0.774
ASE(ξ1) 0.343 0.329 0.319 0.331 0.320 0.308
ASE(ξ2) 0.406 0.387 0.371 0.408 0.398 0.381

For the 100 normal samples, the FPC scores ξik were gener-
ated from N (0, λk), while ξik in the nonnormal samples were
generated from a mixture of two normals, N{(λk/2)

1/2, λk/2}
with probability 1/2 and N{−(λk/2)

1/2, λk/2} with probabil-
ity 1/2. We used the cross-validation procedures described
earlier for selection of bandwidths, number of eigenfunctions,
and generalized shrinkage parameter ρ̂ (11).

To demonstrate the performance of the proposed shrinkage
estimates, we report in Table 1 the averages of the estimates
of the variances σ̂2 in (4), the mean shrinkage factor estimates
for ρ = σ̂2 in the case of Gaussian shrinkage (8), and for ρ =
ρ̂, in the case of generalized shrinkage (12), and also cross-
validation scores in (11) and squared prediction errors

SPE(ρ) =
1

N

N∑
i=1

‖Yi − Ŷi(ρ)‖2. (13)

We find that on average, the generalized shrinkage (12)
leads to larger downsizing of the raw estimators than
Gaussian shrinkage (8) in both normal and mixture distri-
bution situations.

For sample sizes N =10/20/50, and underlying normal dis-
tribution, Gaussian shrinkage results in decreases in cross-
validation (CV) of about 9%/8%/7% and in SPE of about
7%/6%/6%, while for generalized shrinkage, the correspond-
ing decreases are 12%/10%/8% and 10%/8%/6%. Just look-
ing at decreases in SPE for the mixture distribution, Gaussian
shrinkage leads to decreases of 6%/4%/6% for N =10/20/50,
and generalized shrinkage to corresponding decreases of
11%/9%/7%. We draw the following conclusions: The gains
are largest for small samples, and are always larger for gener-
alized shrinkage, as compared to Gaussian shrinkage. The dif-
ferences in gains between the two shrinkage methods decrease
as the sample size gets larger, as was predicted in the dis-

cussion following (10) in Section 4. The generalized shrinkage
parameter ρ̂ also is seen to move closer to σ̂2 with increasing
sample size. We find that the gains do not depend much on
the nature of the distribution of the principal components.

Another outcome measure of interest is the average squared
error for the two FPC scores, ASE(ξk) =

∑N

i=1(ξ̂ik − ξk)
2/

N, k = 1, 2, also listed in Table 1. These errors show similar
behavior to the prediction errors. With regard to all measures,
the gains obtained from shrinkage as compared to no shrink-
age remain substantial, even for large sample sizes. Among
the two shrinkage methods considered, generalized shrinkage
uniformly achieves additional gains, which are particularly
pronounced for small sample sizes.

6. Application to Longitudinal Plasma Folate Data
6.1 14C-Folate Specific Activity
In an experiment conducted at the University of California-
Davis, repeated measurements of the fraction of labeled folate
among total folate in plasma were obtained for 13 healthy
adult volunteers. Measurements were labeled by time since
the volunteers orally ingested a small tracer dose of 14C-folic
acid. The fraction of 14C-folate-among total folate in plasma
(the so-called plasma 14C-folate-specific activity) was mea-
sured in about 20 plasma specimens drawn during the first
day after dosing. After the first day, the drawing of addi-
tional blood specimens became less frequent, with a total of
about 50 specimens being taken during the 200-day period
after dosing.

Our main interest is characterizing the dynamic behavior
of plasma 14C-folate-specific activity in healthy adults. Meth-
ods for the collection, processing, and laboratory analyses of
specimens were as described in Clifford et al. (1998). The plot
of the plasma 14C-folate-specific activity in the first four sub-
jects versus time (after dosing) at which these measurements
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Figure 1. Top: Observed individual trajectories for the first
four subjects, 1 (solid), 2 (dashed), 3 (dashdot), 4 (dotted),
in the original time scale. Bottom: The same four individual
trajectories shown in the transformed time scale.

were taken is shown in the top panel of Figure 1; it reveals
some common patterns that are described in Section 6.4.

6.2 Time Transformation to Address Sparseness
We note that the numbers and locations of the time points
at which measurements were taken are not the same for these
13 subjects. Measurements are very dense during the first
day, and then become increasingly sparse. From the top panel
of Figure 1, using the original time scale, it is not easy to

observe the shapes of the curves. Moreover, because we use
global bandwidths in the smoothing steps for mean function
and covariance surface, the increasing time lag between the
measurements for individual subjects leads to oversmoothing
when choosing an overall appropriate smoothing parameter.

Our solution to this problem is preprocessing of the data
with the time transformation t′ = {log (1+ t)}1/2. In fact, we
obtain a reasonably even distribution of measurement times
after this transformation. Folate measurements versus trans-
formed time are shown in the bottom panel of Figure 1 for
the first four subjects. The transformed time scale is more
conducive for observing the shapes of the curves and for data
smoothing. For the transformed time scale, T=2.31.

6.3 Diagnostics for Trajectories and Outlier Detection
Initially we applied our methods to the plasma folate data of
the entire sample consisting of 13 healthy adult volunteers.
Whether the trajectories recorded for the subjects come from
the same population, and whether there are outliers is of bi-
ological interest. To address such questions, we desire quanti-
ties that are analogous to residuals or deviances, but apply to
entire trajectories rather than traditional scatterplots. As a
summary measure, we consider the integrated squared resid-
ual error in the original time scale. This criterion reflects the
ability of the model to predict an observed sample curve.

Let Yi (t) be the step function determined by Yij in the orig-
inal time scale for the ith subject, as described in Section 3.2;
let Ŷi(t) be the predicted curve and [0, T ′] the original time
range for all subjects. We define the integrated squared resid-
ual error for the ith subject by

REi =

∫ T ′

0

{Yi(s) − Ŷi(s)}2 ds. (14)

A large value of REi, i=1, . . . ,N , may point to an outlying
sample curve that is poorly fitted by the model.

We calculated these integrated squared residual errors for
all 13 subjects, and found that RE2 =1.6 is much larger than
REi ≤ 0.55, i 
= 2. This provides some evidence that this
subject is poorly fitted by the proposed model, and may be
an outlier. The predicted curve and observed values of sub-
ject 2 in the original time scale are shown in Figure 2. The
predicted curve is clearly underestimating the observed data
after about 25 days, especially in the right tail, while the pre-
dicted curves for the other subjects are fairly close to the
observations. Indeed, it was found that subject 2 had been
exposed to 14C earlier through participation in an unrelated
medical trial several years prior to the present study. This
fact would have disqualified this subject from participating in
the present study, but had not been known. This finding at-
tests not only to the astonishing accuracy of the 14C detection
methods used in this study, but also to the usefulness of the
FPC approach for data screening and outlier detection. Since
subject 2 was thus confirmed to be a clear outlier, the data
of subject 2 were not used in the subsequent analysis. Using
the integrated squared residual error REi in the transformed
time scale leads to the same conclusion.

6.4 Mean and Covariance Functions
The estimated mean curve obtained using local weighted lin-
ear smoothing for the remaining 12 subjects is shown in the
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Figure 2. Observed values (dots) and predictions (solid) for
subject 2 in the original time scale.

top panel of Figure 3. The bandwidth b=0.11 was chosen,
guided by cross-validation. The estimated mean curve reflects
the overall trend of the individual curves. One notes a short
slow increase (about 4 minutes in the original time scale)
in the appearance of 14C-folate in plasma. This delay cor-
responds to the time needed for the dose to reach and be
absorbed from the small intestine. Then, the mean plasma
14C-folate specific activity by time since dosing exhibits a
sharp initial rise to a peak at about 2 hours (in the origi-
nal time frame) as the administered dose enters the blood
plasma pool. Then, it drops at a decreasing rate as it en-
ters cells where the 14C-folate is sequestered and converted to
other chemical forms of folate. Finally, the pattern changes
into a smooth, slow decline toward zero.

The estimated covariance surface obtained using local
weighted linear smoothing after the diagonal was removed
is shown in the bottom panel of Figure 3. The bandwidth
was h=(0.15, 0.15), chosen by one-curve-leave-out cross-
validation. We note that the two smallest eigenvalues of this
covariance estimate were found to be negative. To obtain a
nonnegative-definite covariance surface, we implemented the
simple modification described in Section 3.1, namely, omit-
ting the components with negative eigenvalues. The covari-
ance surface shows high variability at the beginning, with a
sharp increase followed by a rapid decline. The estimate σ̂2 (4)
for the variance σ2 of the measurement error was σ̂2 = 0.0037.

6.5 Eigenfunctions
The smooth estimates of the first three eigenfunctions are
presented in Figure 4 (in transformed time scale). The cross-
validation scores level off when more than three eigenfunctions
are used, suggesting that the first three principal component

curves are sufficient to describe the modes of variability. These
three principal component functions explain about 98.5% of
the total variation.

The first eigenfunction indicates that a large portion of the
variability between subjects is roughly in the direction of the
amplitude of the mean curve, as the first eigenfunction has
a similar shape to the mean function. In particular, 89.48%
of the total variability is “explained” by the first eigenfunc-
tion, which indicates that this mode of variation is dominant.
The second eigenfunction takes the shape of an approximate
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Figure 3. Top: Smooth estimate of the mean function
(transformed time scale). Bottom: Smooth estimate of the
covariance surface (transformed time scale).



Shrinkage Estimation for Functional Principal Component Scores 683

0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Transformed time

Figure 4. The first three eigenfunctions in the transformed time scale, first (solid), second (dashed), and third eigenfunction
(dash-dot).

contrast between observations around 1 hour and 4.5 hours,
and contributes 6.29% to the total variation. The third eigen-
functions is indicative of a contrast of observations before and
after 8 hours, and contributes 2.73% to the total variation.

6.6 Shrinkage Estimates and Predicted Trajectories
We applied functional principal component analysis without
shrinkage, with Gaussian shrinkage (8), and with generalized
shrinkage (12). Since σ̂2 = 0.0037, the additional errors in
model (3) are small. The number of observations for each
subject is around 40. Together with the eigenvalue estimates,
0.1052, 0.0074, and 0.0032, we that find Gaussian shrinkage
factors (8) are close to 1. This situation changes for the gener-
alized shrinkage (12). The estimate of the generalized shrink-
age parameter ρ is ρ̂ = 0.038. The mean values of shrinkage
factors and of estimated prediction errors based on one-curve-
leave-out cross-validation are shown in Table 2. We find that
gains of 4% over Gaussian shrinkage are realized in this ex-
ample by using generalized shrinkage.

From the estimates of the first FPC scores, ξ̂i1, we find
that subjects 3 and 11 have the first- and second-largest FPC
scores with regard to the first eigenfunction, corresponding to
the first- and second-highest peaks. Subjects 7, 8, 9, and 10
have large negative scores corresponding to low peaks. The
predicted trajectories for individual subjects are shown in
Figure 5, based on generalized shrinkage estimates. Since
there are about 40 measurements for each subject, the time
points are dense after transformation, so that the proposed
method is quite feasible. One can see that the predictions are
reasonably close to the observations, except for minor devia-
tions near the peaks. To illustrate the effectiveness of the pre-
dictions, we also show predictions after transforming the time
back to the original scale. The observations and predictions
for the first three days for the 12 subjects, excluding subject
2, are shown in Figure 6. The agreement between observed
and fitted values indicates that the proposed method reason-
ably explains the dynamic behavior of the plasma 14C-folate-
specific activity responses to a small oral dose of 14C-folic
acid.

Table 2
Shrinkage estimation of functional principal component scores

for folate data

Shrinkage type None Gaussian Generalized

ASP — 0.0085 0.038
ASPF(ξ1) 1 0.998 0.987
ASPF(ξ2) 1 0.986 0.886
ASPF(ξ3) 1 0.970 0.771
CV 0.355 0.353 0.342

Note: Average shrinkage parameter (ASP) is ρ = σ̂2 (4) for Gaussian
shrinkage and ρ = ρ̂ (11) for generalized shrinkage. Average shrink-
age factor for the kth functional principal component score is
ASF(ξk) = 1/N

∑N

i=1(ξ̂ik/η̂ik), k = 1, 2, 3, using (8) for Gaussian
and (12) for generalized shrinkage, and CV denotes the observed
minimum of cross-validation score (6).

7. Concluding Remarks
In this article, we propose Gaussian and generalized shrink-
age estimates for the FPC scores. The shrinkage estimates are
simple to obtain and improve upon the customary integral
approximation, both from a theoretical as well as practical
viewpoint. For the folate data, generalized shrinkage leads to
improved estimates of the FPC scores, as manifested by im-
proved cross-validation prediction errors. We also introduced
scatterplot smoothing methods that are specially adapted to
the presence of additional measurement errors. By fitting lo-
cal quadratic components along the direction perpendicular
to the diagonal, we improve estimation in the neighborhood
of and at the diagonal of the covariance surface. A square-
root logarithm time transformation is shown to address the
increasing time lags and sparsity of measurements in the right
tail.

The proposed nonparametric method combining data-
driven flexible features and shrinkage estimates seems well
suited to the description of samples of biological trajecto-
ries. Integrated squared residual error is shown to be a useful
criterion for diagnostics and the detection of outliers. One
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Figure 5. Observed (dots) and predicted (solid curves) folate values for the 12 subjects (excluding subject 2), shown in the
transformed time scale.
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Figure 6. Same as Figure 5 for the first three days, shown in the original time scale.

such outlier was identified by this criterion and was confirmed
to belong to a biologically different population.
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Résumé

Nous présentons l’application d’une méthode non
paramétrique à l’analyse fonctionnelle en composantes
principales de courbes formées par les mesures d’une tra-
jectoire aléatoire d’un échantillon de sujets. Le dispositif
repose sur un maillage irrégulier de points-dates auxquels
des mesures répétées sont effectuées sur un certain nombre
de sujets. Nous introduisons des estimateurs par réduction
(“shrinkage”) pour les scores des composantes principales
fonctionnelles, utilisés comme effets aléatoires dans le modèle.
On utilise des méthodes de lissage sur nuages de points pour
estimer la fonction de moyenne et la surface de covariance
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de ce modèle. Nous proposons d’améliorer l’estimation au
voisinage et sur la diagonale de la surface de covariance où
les erreurs de mesures sont réfléchies. La présence d’erreurs
de mesure additives justifie les estimations par réduction
pour les scores des composantes principales fonctionnelles.
Les estimation par réduction sont développées par meilleure
prédiction linéaire, et dans une version généralisée visent à
minimiser l’erreur de prédiction par écart-d’une-courbe (one-
curve-leave-out). L’estimation d’une trajectoire individuelle
combine les données de l’individu avec celles des autres
individus. Nous appliquons nos méthodes à des données
relatives à l’analyse du niveau de folates marqué au 14C
comme fonction du temps pour des adultes sains avec une
petite dose de traçage d’acide folique marqué au 14C. On a
introduit une transformation sur le temps pour tenir compte
de l’irrégularité des temps auxquels les mesures ont été prises.
La méthodologie proposée, incorporant la réduction et des
propriétés adaptées aux données apparâıt bien adaptée pour
décrire les cinétiques de population pour l’activité spécifique
des folates marqués au 14C, ainsi que les effets aléatoires, et
peut être aussi appliquée à d’autres problèmes d’analyse de
données fonctionnelles.
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