TALK: SAITO’S CONJECTURE ON CHARACTERISTIC CLASSES OF
CONSTRUCTIBLE ETALE SHEAVES

ENLIN YANG

1. INTRODUCTION

This talk is based on joint work with Yigeng Zhao.

1.1. For vector bundles on varieties, we have Chern/Characteristic classes. Chern classes measures
non-triviality of vector bundles. Before 1966, Grothendieck conjectured that there exists a theory of
characteristic classes for constructible étale sheaves and a discrete Riemann-Roch type formula (see
[Récoltes et Semailles, Note 871]). Such construction requires a generalization of Artin-Serre-Swan
type local invariants to higher dimensional varieties. Let us fix a few notation.

k: perfect field.

A =TF;,Q or Q, for a prime £ € k.

X: variety over k.

F: constructible etale sheaf of A-modules on X.

1.2. What is a constructible etale sheaf? The most interesting example comes from the following
case: there is an open subscheme U € X, and F determines a A-representation of the etale funda-
mental group 71 (U). When F comes from a representation of 71 (U), then we say F is a locally con-
stant (smooth) sheaf on X. Otherwise F has ramification along the boundary X\U. Its character-
istic class cex (F) € CHo(X) (or its refined version: the Swan class Sw¥ () € CHo(X\U)) mea-
sures the ramification of F along the boundary X\U. In some sense, the characteristic/Swan class
measures the “distance” between F and the smooth sheaf A®**%* (measures the non-smoothness

of F).

Example 1.3. Assume that X is connected, smooth and proper of dimension d over k. When F is
smooth on X, then we have the Gauss-Bonnet-Chern formula for the Euler-Poincare characteristic:

(1.3.1) x(Xz, F) = X(X,;,A@ankf) = rankF - x(Xz, A) = rankF - degcd(Qﬁé;k).

In general, if F is smooth on U, then x(Xj, F) — x(Xj, A®"357) is the degree of a zero cycle class
supported on the boundary X\U (namely, the Swan classes):

(1.3.2) X(X5, F) = X (X5, ABNT) — —deg(Sw 4 (F))-

If moreover X is a smooth proper curve, we have the well-known Grothendieck-Ogg-Safarevich
formula

(1.3.3) X(X5, F) = X(X5, ASF) — — N, (F),
ze| X\U|

where a,(F) = dimFy, — dimFz + Sw,(F) is the Artin conductor of F at x, Sw,(F) is the Swan
conductor.

March 28, 2025.



2 ENLIN YANG

1.4. Assume that X is smooth and connected over k. Up to now, there are two kinds of charac-
teristic classes (Cx/, and ccy ;) and three kinds of Swan classes (Swg(s/k, Sw ), and Sw])“(s/k).

(1) The cohomological characteristic class Cx/,(F) € H Y(X,Kx /i) is implicitly defined in
[SGA5] and studied by Abbes and Saito around 2007. (See also Kashiwara-Schapira’s book
“Sheaves on manifolds”)

(2) The geometric characteristic class ccy i, (F) € CHo(X) is defined by Saito around 2015.

Even though their definitions and constructions are very different, Saito conjectures that they are
essentially the same.

Conjecture 1.5 (Takeshi Saito, [Sail7]). Consider the cycle class map cl : CHy(X) — HO(X,Kx ),
where Kx 1, = Rf'A and f : X — Speck. For any constructible étale sheaf F on X, we have
cl(cexi(F)) = Cxp(F)-
Please refer to [UYZ20] for the version of Swan classes. Note that, when k = F), is a finite field
and A = Z/¢™ and if X is projective and smooth, then we have HY(X, Ky ;) ~ H'(X,Z/l™)" ~
ab(X) /€™, which may highly non-trivial.
Here is our main result:

Theorem 1.6 (Y-Zhao, [YZ25]). Saito’s conjecture holds if X is quasi-projective.

If using more co-category, we could be able to prove Saito’s conjecture in general.

2. IDEA OF THE PROOF
In the following, we omit to write R or L to denote the derived functors.

2.1. Before describing the idea of proofs, let me discuss a little bit about F-smooth morphisms (or
F-ULA morphisms). This is a cohomological version of the usual smooth morphisms. Let F be a
constructible étale sheaf on X. In general, for a separated morphism f : X — § of finite type, we
say f is F-smooth if the relative purity holds for any base change diagram

Wi X
(2.1.1) pl lf

HS,

i.e., the canonical morphism
(2.1.2) #F QY pr st 25 G F
is an isomorphism. The map (2.1.2) is defined to be the composition

i*F@F pro'A B F @b A 2 it (i F @l it prA) DU, i

FL i f*A) 25 i F,

Example 2.2. (1) If f : X — S is a smooth morphism, then f is A-smooth for the constant
sheaf A.
(2) If f =idx : X — X is the identity, then f is F-smooth if and only if F is smooth (locally
constant) on X.
(3) If S = Speck is a point, then X — Speck is F-smooth for any constructible etale sheaf F.

Definition 2.3. For (F,X EN S), its NA-locus (non-acyclicity locus) is the smallest closed subset
Z < X such that X\Z — S is F-smooth.

2.4. Now let me explain our ideas how to prove Theorem 1.6. We use fibration method.
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2.4.1. Wonderful case. If there is a F-smooth morphism f : X — Y to a smooth curve, then we
proved that Cx ;(F) is determined by the family {Cx, /,(F|x,)}vely|- The later family is encoded
by the relative cohomological characteristic class Cxy(F) € H O(X,Kx ) with Kxy = Rf ‘A,
which is introduced in [YZ21] under transversal conditions and generated to ULA-conditions by Lu
and Zheng.

2.4.2. Good fibration. In general, we don’t have such F-smooth fibration. But not too bad, after
blowing-up, we could find a good Lefschetz pencil by a result of Saito-Yatagawa: The morphism
f X — Y is a good fibration with respect to F if f is F-smooth outside finitely many closed
points such that each fiber contains at most one point of the NA-locus.

In this case, we still have Cx/y(F) (encoding the information {Cx, /,(F|x,)}vejy|)- But this
family cannot determine C'x ;,(F) anymore. But by the wonderful case, the obstruction comes from
a class supported on the NA-locus. Thus we have to construct a class Ca(F) supported on the NA-
locus, which is called the (cohomological) non-acyclicity class. This NA-class Ca(F) satisfies the
fibration formula below. Similar formula also holds for the geometric characteristic class ccx ;(F).

In order to compare Cx/,(F) with ccx,(F), we only need to calculate Ca(F) for isolated
singularities. This is given by the cohomological Milnor formula.

Now, we have a new class: NA-class. You can run the previous argument and then get a
family /relative version of this NA-class. In the proof of cohomological Milnor formula, we need this
relative version to do deformation!

3. NON-ACYCLICITY CLASSES

3.1.  We recall the transversality condition introduced in [YZ25, 2.1], which is a relative version of
the transversality condition studied by Saito [Sail7, Definition 8.5]. Consider the following cartesian
diagram in Schg:

W —X
(3.1.1) pl lf
T ;

By [YZ25, 2.11], there is a functor 62 : Deig(X, A) — Deie(W, A) such that for any F € Dege(X, A),
we have a distinguished triangle

i
O
é

_

.1

(3.1.2) FFQF prata L5 G L A F AL

If 62(F)=0, then we say that the morphism § is F-transversal.
3.2. Consider a commutative diagram in Schg:

70T X / Y,
(3.2.1) \ /
h g
s

where 7 : Z — X is a closed immersion and ¢ is a smooth morphism. Let us denote the diagram

(3.2.1) simply by A = A)Z(/Y/S Let F € Dete(X, A) such that X\Z — Y is F|x\ z-smooth and that

h: X — S is F-smooth.
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3.3. Leti: X xy X - X xg X be the base change of the diagonal morphism 6 : Y - Y xgY:

/511 . 150

(3.3.1) X xy X —> X xg X
N
\ é

Y Yv><SYV7

where dp and d; are the diagonal morphisms. Put Kx /g = h'A and Ka := 5AICX/S o~ 5}‘5A50*ICX/S.
We have the following distinguished triangle

(3.3.2) Kxy — Kxs — Ka 5.
We put

Hg := RHomx x o x (prsF, pryF) < Ts := F& Dx /s(F).
We have the following microlocal result:

Lemma 3.4. 52‘5”7'3 s supported on Z.

Definition 3.5 ([YZ25, Definition 4.6]). The relative cohomological characteristic class Cx g (F)
is the composition (cf. [YZ25, 3.1])

(3.5.1) A% RHom(F, F) — 6hHs «— 04T — 05Ts <> Kx/s-

The non-acyclicity class Ca(F) € HY(X, Ka) is the composition

(3.5.2) A — 5Hs < 65Ts =~ 01i' Ty — 07 Ts — 670°Ts < 1u7'016%Ts — 7T Kxjy /s
If the following condition holds:

(3.5.3) HY(Z,Kzy)=0and H(Z,Kzy) =0

then the map H)(X,Ky/s) — HY%(X,Kx/y/s) is an isomorphism. In this case, the class Ca(F) €
HY(X,Kxy,s) defines an element of H)(X,Kx/s).

Now we summarize the functorial properties for the non-acyclicity classes (cf. [YZ25, Theorem
1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Theorem 3.6 (Y-Zhao,[YZ25]).
(1) (Fibration formula) If H*(Z,Kzy) = H'(Z,Kz/y) = 0, then we have
(3.6.1) Cx/s(F) = cr(f*Qi;/VS) N Cxy(F)+Ca(F) in HY(X,Kx/s).
(2) (Pull-back) Let b : S — S be a morphism of Noetherian schemes. Let A’ = A)Z(/, Kyrs e
the base change of A = A)Z(/WS by b:S8 — S. Let bx : X' = X xg 5" — X be the base
change of b by X — S. Then we have

(3.62) B Ca(F) = Car(b5F) in HU(X' Ko,
where b% : H)(X,Kxys) = Hy (X', Kas) is the induced pull-back morphism.
(3) (Proper push-forward) Consider a diagram A’ = A)Z(I//ws. Let s : X — X’ be a proper
morphism over Y such that Z < s~1(Z’). Then we have
(3.6.3) $:(Ca(F)) = Car(RsxF) in Hy (X', Kxiy)s),
where s, : HY(X,Ka) — H% (X', A) is the induced push-forward morphism.
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(4) (Cohomological Milnor formula) Assume S = Speck. If Z = {z} and Y is a smooth curve,
then we have
(3.6.4) Ca(F) = —dimtotR®z(F, f) in A= HJ(X,Kx ),

where R®(F, f) is the complex of vanishing cycles and dimtot = dim + Sw is the total
dimension.

(5) (Cohomological conductor formula) Assume S = Speck. If Y is a smooth connected curve
over k and Z = f~!(y) for a closed point y € |Y|, then we have

(3.6.5) [+Ca(F) = —ay(Rf:F) in A= H)(Y,Ky).

(6) The formation of non-acyclicity classes is also compatible with specialization maps (cf.
[YZ25, Proposition 4.17]).

3.7. Let X be a smooth connected curve over k. Let F € D(X,A) and Z < X be a finite set of
closed points such that F|x\ are smooth. By the cohomological Milnor formula (3.6.4), we have
the following (motivic) expression for the Artin conductor of F at z € Z

(3.7.1) 02(F) = dimtot RO (F,id) = —C{7},  (Flv),

where U is any open subscheme of X such that U n Z = {z}. By (3.6.1), we get the following
cohomological Grothendieck-Ogg-Shafarevich formula (cf. [YZ25, Corollary 6.6)):

(3.7.2) Cx/p(F) = rankF - e1(Qy ) = Y an(F) - [¢] in HO(X, Kxp)-

reZ

3.8. Idea of the proof. May assume Y = A!. Consider

fxid

ZxPl s X xP! Y x P,

(3.8.1) R /

Pl
and G = priF ® Li(ft), where L is the Artin-Schreier sheaf on Al associated with some character

Y : F, — A*. After taking a finite extension P — P!, we may assume G € D2(A x P\c0). Applying
the pull-back and specialization formulas to Ca xp\0(G) € HY(Z x P, Kzxpp) = @ez A, we get

Ca(Ypr,y (G)) = Ca(F).
Since W, (G) is supported on Z, by definition of NA class, we get

CA(F) = Ca(Tpr,(G)) = — > dimtot ROz (F, f) - [x].

reZ

Remark 3.9. I found an open question due to Drinfeld in Beilinson’s paper [Bei07]: For microlocal-
analysis, our habitat is a smooth variety, which does not look very natural for the story. What
intrinsic geometry is truly relevant for the micro-local analysis of sheaves? It should make sense
outside the smooth context, so that one could play with singular spaces directly, without embedding
them into smooth ones.

Here is a partial answer:

Smooth case Singular case
Characteristic cycle | relative cohomological class and NA class
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