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Orbit harmonics

Orbit harmonics is a practical method in combinatorial representa-
tion theory. Given a finite locus Z € CN, orbit harmonics yields a

graded finite C-algebra R(Z).
o C|Z] = R(Z) as an isomorphism of vector spaces.

o If there exists a finite subgroup G C GLy(C) acting on Z,
then C[Z] = R(Z) as an isomorphism of G-modules.

Orbit harmonics provides an algebraic version R(Z) for a combina-
torial object Z. Furthermore, R(Z) is a graded refinement of C|[Z].
We are interested in the representation theory and combinatorics on
them.
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Former works about orbit harmonics on finite matrix loci

Rhoades [2024] initiated the application of orbit harmonics to fi-
nite matrix loci Z C Mat,«,(C). He considered the locus &,, C
Mat ,« n(C) of permutation matrices carrying an action of the group
S, X 6, C GL(Matpxn(C)) by left and right multiplication. Liu
[2024] extended this work to colored permutations.
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Our work

In our work, we consider two classes of involution matrix loci in
Mat,«n(C) as follows. Both carry the conjugate & ,-action g - z :

o M, ={we &, : w?=1}C Mat,x,(C)
o M,,={w & M, : w has exactly a fixed points}

The following things are calculated explicitly by us.
@ The graded G,-module structure of R(M,) and R(M,, ,).

@ An explicit linear basis of R(M,,).
@ An explicit ring presentation of R(M) and R(M )
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Orbit harmonics

Given a finite locus Z C CV, orbit harmonics yields the graded

C-alge
o [

ora R(Z) step by step.

ne vanishing ideal I(Z2) C Clxy,--- ,xn] is given by

[(Z) ={f €C|xy,--- ,xn| : f(z)=0forall ze€ Z}.

@ For any ideal | C C|xy,-- -, xn|, the graded ideal of I is the
homogeneous ideal

grl = (r(f) : fel,f+#0)

where 7(f) is the highest-degree homogeneous component of

f'

£ 0.

@ R(Z) =Clxqy,--- ,xn]/erl(2).
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Standard properties of orbit harmonics

Recall that R(Z) = Clxq,--- ,xn]/grl(Z) is a graded C-algebra.
We have the following isomorphisms of vector spaces.

o C[Z] =Clxy, -+ ,xn]/1(Z)

o Clxi, -+, xn]<a/I(Z) N Clxy, -+, xn]<d = R(Z)<d

@ In particular, C[Z] Z Clx, -+ ,xn|/I(Z) = R(Z)
If there exists a finite subgroup G C GLy(C) acting on Z, then the
above-stated linear isomorphisms can be replaced by isomorphisms
of G-modules.
Note: Theisomorphism C|xq, -, xn]<q/I(Z)NClx1, -, xn]<d S
R(Z)<q is abstract without an explicit map.
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Standard Young tableaux

Let A = n be a partition. A standard Young tableau of shape A
is a bijective filling of [n] = {1,---, n} into the Young diagram of
shape A, such that the entries are increasing across rows and down
columns. SYT(A) := {Standard Young tableaux of shape \}.
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Schensted correspondence

The Schensted correspondence [Schensted, 1961] is a bijection

Sn =5 | [{(P,Q) : P,QeSYT()\)}
AFn

w — (P(w), Q(w)).
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Symmetric functions

o Write A = ,>o/\n for the graded algebra of symmetric

functions in an infinite variable set {x1, xp,--- } over the
ground field C(q).

@ A, possesses a linear basis consisting of Schur functions
{S)\ A n}.
@ For f,g € A, we can define the plethysm f[g] € A.

@ In particular, we have

sdls2] = Z S).-

AFn
A\ even
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Frobenius image

@ Irreducible G,-modules are in one-to-one correspondence with
vartitions of n. That is, Specht modules V.

o Let V=@, ,c V" be an G,-module. Then the Frobenius
image of V is the symmetric function

Frob(V) = Z C\S) -

o It V=0,>q Vy is a graded G,-module, we define the graded
Frobenius image of V' by

grkrob(V; q) = Z Frob(Vy) - q°.
d>0
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Frobenius image

Frob(M .) = S(n_a)/2[52] .S, ifa=n mod 2.
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Notations

@ From now on, we focus on the loci M,, and M, ,.

@ For convenience, the orbit harmonics variable set {xi,--- ,xn}
is rearranged into a matrix

Xnxn = {Xij : 1 <i,j < n}.
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Generators of grl(M,)

Proposition (Liu-Ma-Rhoades-Z.'25)
erl(M ) can be generated by:

all squares x?; of variables,
all sums x;1 + - --+ x;., of variables in a single row,
all sums x1; + --- + xnj of variables in a single column,

all products x; j - x; j of variables in a single row,
all products x; j - xj ; of variables in a single column, and

all diagonally symmetric differences x; j — x; ; of variables.
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A linear basis of R(M,)

Let w € M, be an involution given by w = (i1 j1) - - - (im jm) Where

i < Jix for 1 < k < m. Then we define the matching monomial
m(w) € C[x,xn] by

m
m(w) = H Xi -
k=1
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A linear basis of R(M,)

Theorem (Liu-Ma-Rhoades-Z.25)

The set {m(w) : w € M,} of matching monomials descends to a
linear basis of R(Mp).

y

Corollary (Liu-Ma-Rhoades-Z.'25)

The Hilbert series of R(M,,) is given by

/2]
Hilb(R(M,);q) = Y (2’;) (2d — 1)1 - ¢“.
d=0
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The graded G,-module structure of R(M,,)

Theorem (Liu-Ma-Rhoades-Z.25)

The graded Frobenius image of R(M ) is given by

[n/2]
erFrob(R(M ) Z g~ - sk[s2] - Sn—2k-
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Generators of grl(M, o)

Proposition (Liu-Ma-Rhoades-Z.'25)

For n > 0 even, we have
gri(Mpo) = grl(Mp) +(xi;i : L <i < n).
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The graded module structure of R(M )

Theorem (Liu-Ma-Rhoades-Z.25)

For n > 0 even, the graded Frobenius image of R(M ) is given by

n—A1

grFrob(R(Mp0)iq) = » q 2 -s).

AEn
A even

Corollary (Liu-Ma-Rhoades-Z."25)

For n > 0 even, the Hilbert series of R(M o) is given by

n—1lds(w)
2

Hilb(R(Mnp); q)

|
(]

Basis?
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The graded module structure of R(M,, ,)

Theorem (Liu-Ma-Rhoades-Z.25)

Suppose a = n mod 2. The graded Frobenius image of R(M,, )
is given by

grkFrob(R(Mp.); q) =

(n—a)/2

Y {sdls2] - sn—2d — Sd—1[%2] - Sn—2d+2}\<n—2d+a G
d—=0

d

with the convention that s_1 = 0.

Hilbert series? Basis?
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Open problems

Problem

Find a canonical linear basis for R(M, ;) when a=n mod 2.

Explicitly compute the Hilbert series Hilb(R ) when a = n
mod 2 and a > 1.

v

Problem
Show that both R(M,) and R(M, ;) are &,-log-concave.

Problem
Consider other cycle types or colored permutations.
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Thank you very much for your attention!
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