Involution matrix loci and orbit harmonics

Hai Zhu^1 (joint with Jasper M. Liu², Yichen Ma³ and Brendon Rhoades²)

¹School of Mathematical Sciences, Peking University
²Department of Mathematics, University of California, San Diego
³Department of Mathematics, Cornell University

May 29, 2025

Published in: Mathematische Zeitschrift

DOI: 10.1007/s00209-025-03736-4

- Introduction
 - Orbit harmonics
 - Former works about orbit harmonics on finite matrix loci
 - Our work
- 2 Background
 - Orbit harmonics
 - Some combinatorics
 - Representation theory of symmetric groups
- Main results
 - Orbit harmonics on \mathcal{M}_n
 - Orbit harmonics on $\mathcal{M}_{n,0}$
 - Orbit harmonics on $\mathcal{M}_{n,a}$
- Open problems

Former works about orbit harmonics on finite matrix loci Our work

Orbit harmonics

Orbit harmonics is a practical method in combinatorial representation theory. Given a finite locus $\mathcal{Z} \in \mathbb{C}^N$, orbit harmonics yields a graded finite \mathbb{C} -algebra $R(\mathcal{Z})$.

- $\mathbb{C}[\mathcal{Z}] \cong R(\mathcal{Z})$ as an isomorphism of vector spaces.
- If there exists a finite subgroup $G \subset GL_N(\mathbb{C})$ acting on \mathcal{Z} , then $\mathbb{C}[\mathcal{Z}] \cong R(\mathcal{Z})$ as an isomorphism of G-modules.

Orbit harmonics provides an algebraic version $R(\mathcal{Z})$ for a combinatorial object \mathcal{Z} . Furthermore, $R(\mathcal{Z})$ is a graded refinement of $\mathbb{C}[\mathcal{Z}]$. We are interested in the representation theory and combinatorics on them.

Former works about orbit harmonics on finite matrix loci

Rhoades [2024] initiated the application of orbit harmonics to finite matrix loci $\mathcal{Z} \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$. He considered the locus $\mathfrak{S}_n \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$ of permutation matrices carrying an action of the group $\mathfrak{S}_n \times \mathfrak{S}_n \subset \operatorname{GL}(\operatorname{Mat}_{n \times n}(\mathbb{C}))$ by left and right multiplication. Liu [2024] extended this work to colored permutations.

Our work

In our work, we consider two classes of involution matrix loci in $\operatorname{Mat}_{n\times n}(\mathbb{C})$ as follows. Both carry the conjugate \mathfrak{S}_n -action $g\cdot z:=gzg^{-1}$.

- $\mathcal{M}_n := \{ w \in \mathfrak{S}_n : w^2 = 1 \} \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$
- $\mathcal{M}_{n,a} := \{ w \in \mathcal{M}_n : w \text{ has exactly } a \text{ fixed points} \}$

The following things are calculated explicitly by us.

- The graded \mathfrak{S}_n -module structure of $R(\mathcal{M}_n)$ and $R(\mathcal{M}_{n,a})$.
- An explicit linear basis of $R(\mathcal{M}_n)$.
- An explicit ring presentation of $R(\mathcal{M}_n)$ and $R(\mathcal{M}_{n,0})$

Orbit harmonics

Given a finite locus $\mathcal{Z} \subset \mathbb{C}^N$, orbit harmonics yields the graded \mathbb{C} -algebra $R(\mathcal{Z})$ step by step.

• The vanishing ideal $I(\mathcal{Z}) \subseteq \mathbb{C}[x_1, \dots, x_N]$ is given by

$$I(\mathcal{Z}) := \{ f \in \mathbb{C}[x_1, \cdots, x_N] : f(z) = 0 \text{ for all } z \in Z \}.$$

• For any ideal $I \subseteq \mathbb{C}[x_1, \dots, x_N]$, the *graded ideal* of I is the homogeneous ideal

$$\operatorname{gr} I := \langle \tau(f) : f \in I, f \neq 0 \rangle$$

where $\tau(f)$ is the highest-degree homogeneous component of $f \neq 0$.

• $R(\mathcal{Z}) := \mathbb{C}[x_1, \cdots, x_N]/\mathrm{grI}(\mathcal{Z}).$

Standard properties of orbit harmonics

Recall that $R(\mathcal{Z}) := \mathbb{C}[x_1, \dots, x_N]/\text{grI}(\mathcal{Z})$ is a graded \mathbb{C} -algebra. We have the following isomorphisms of vector spaces.

- $\mathbb{C}[\mathcal{Z}] \cong \mathbb{C}[x_1, \cdots, x_N]/I(\mathcal{Z})$
- $\mathbb{C}[x_1, \cdots, x_N]_{\leq d}/\mathrm{I}(\mathcal{Z}) \cap \mathbb{C}[x_1, \cdots, x_N]_{\leq d} \cong R(\mathcal{Z})_{\leq d}$
- In particular, $\mathbb{C}[\mathcal{Z}] \cong \mathbb{C}[x_1, \cdots, x_N]/\mathrm{I}(\mathcal{Z}) \cong R(\mathcal{Z})$

If there exists a finite subgroup $G \subset GL_N(\mathbb{C})$ acting on \mathcal{Z} , then the above-stated linear isomorphisms can be replaced by isomorphisms of G-modules.

Note: The isomorphism $\mathbb{C}[x_1, \dots, x_N]_{\leq d}/\mathrm{I}(\mathcal{Z}) \cap \mathbb{C}[x_1, \dots, x_N]_{\leq d} \cong_G R(\mathcal{Z})_{\leq d}$ is abstract without an explicit map.

Standard Young tableaux

Definition

Let $\lambda \vdash n$ be a partition. A standard Young tableau of shape λ is a bijective filling of $[n] = \{1, \dots, n\}$ into the Young diagram of shape λ , such that the entries are increasing across rows and down columns. $\mathrm{SYT}(\lambda) := \{\mathrm{Standard\ Young\ tableaux\ of\ shape\ }\lambda\}$.

Example

$$n = 7, \lambda = (4, 2, 1)$$

1	3	6	7
2	5		
4			

Schensted correspondence

The Schensted correspondence [Schensted, 1961] is a bijection

$$\mathfrak{S}_n \xrightarrow{1:1} \bigsqcup_{\lambda \vdash n} \{ (P, Q) : P, Q \in \text{SYT}(\lambda) \}$$

$$w \longmapsto (P(w), Q(w)).$$

Symmetric functions

- Write $\Lambda = \bigoplus_{n \geq 0} \Lambda_n$ for the graded algebra of symmetric functions in an infinite variable set $\{x_1, x_2, \dots\}$ over the ground field $\mathbb{C}(q)$.
- Λ_n possesses a linear basis consisting of Schur functions $\{s_{\lambda}: \lambda \vdash n\}$.
- For $f, g \in \Lambda$, we can define the plethysm $f[g] \in \Lambda$.
- In particular, we have

$$s_d[s_2] = \sum_{\substack{\lambda \vdash n \ \lambda \text{ even}}} s_\lambda.$$

Frobenius image

- Irreducible \mathfrak{S}_n -modules are in one-to-one correspondence with partitions of n. That is, Specht modules V^{λ} .
- Let $V \cong \bigoplus_{\lambda \vdash n} c_{\lambda} V^{\lambda}$ be an \mathfrak{S}_{n} -module. Then the *Frobenius image* of V is the symmetric function

$$\operatorname{Frob}(V) \coloneqq \sum_{\lambda \vdash n} c_{\lambda} s_{\lambda}.$$

• If $V = \bigoplus_{d \geq 0} V_d$ is a graded \mathfrak{S}_n -module, we define the *graded Frobenius image* of V by

$$\operatorname{grFrob}(V;q) = \sum_{d\geq 0} \operatorname{Frob}(V_d) \cdot q^d.$$

Frobenius image

Lemma

 $\operatorname{Frob}(\mathcal{M}_{n,a}) = s_{(n-a)/2}[s_2] \cdot s_a \text{ if } a \equiv n \mod 2.$

Notations

- From now on, we focus on the loci \mathcal{M}_n and $\mathcal{M}_{n,a}$.
- For convenience, the orbit harmonics variable set $\{x_1, \dots, x_N\}$ is rearranged into a matrix

$$\mathbf{x}_{n\times n}\coloneqq\{x_{i,j}\,:\,1\leq i,j\leq n\}.$$

Generators of $grI(\mathcal{M}_n)$

Proposition (Liu-Ma-Rhoades-Z.'25)

 $grI(\mathcal{M}_n)$ can be generated by:

- all squares $x_{i,j}^2$ of variables,
- all sums $x_{i,1} + \cdots + x_{i,n}$ of variables in a single row,
- all sums $x_{1,j} + \cdots + x_{n,j}$ of variables in a single column,
- all products $x_{i,j} \cdot x_{i,j'}$ of variables in a single row,
- all products $x_{i,j} \cdot x_{i',j}$ of variables in a single column, and
- all diagonally symmetric differences $x_{i,j} x_{j,i}$ of variables.

A linear basis of $R(\mathcal{M}_n)$

Definition

Let $w \in \mathcal{M}_n$ be an involution given by $w = (i_1 j_1) \cdots (i_m j_m)$ where $i_k < j_k$ for $1 \le k \le m$. Then we define the matching monomial $\mathrm{m}(w) \in \mathbb{C}[\mathbf{x}_{n \times n}]$ by

$$\mathrm{m}(w) \coloneqq \prod_{k=1}^m x_{i_k,j_k}.$$

A linear basis of $R(\mathcal{M}_n)$

Theorem (Liu-Ma-Rhoades-Z.'25)

The set $\{m(w) : w \in \mathcal{M}_n\}$ of matching monomials descends to a linear basis of $R(\mathcal{M}_n)$.

Corollary (Liu-Ma-Rhoades-Z.'25)

The Hilbert series of $R(\mathcal{M}_n)$ is given by

$$\operatorname{Hilb}(R(\mathcal{M}_n);q) = \sum_{d=0}^{\lfloor n/2 \rfloor} \binom{n}{2d} \cdot (2d-1)!! \cdot q^d.$$

The graded \mathfrak{S}_n -module structure of $R(\mathcal{M}_n)$

Theorem (Liu-Ma-Rhoades-Z.'25)

The graded Frobenius image of $R(\mathcal{M}_n)$ is given by

$$\operatorname{grFrob}(R(\mathcal{M}_n);q) = \sum_{k=0}^{\lfloor n/2 \rfloor} q^k \cdot s_k[s_2] \cdot s_{n-2k}.$$

Generators of $grI(\mathcal{M}_{n,0})$

Proposition (Liu-Ma-Rhoades-Z.'25)

For n > 0 even, we have

$$\operatorname{grI}(\mathcal{M}_{n,0}) = \operatorname{grI}(\mathcal{M}_n) + \langle x_{i,i} : 1 \leq i \leq n \rangle.$$

The graded module structure of $R(\mathcal{M}_{n,0})$

Theorem (Liu-Ma-Rhoades-Z.'25)

For n > 0 even, the graded Frobenius image of $R(\mathcal{M}_{n,0})$ is given by

$$\operatorname{grFrob}(R(\mathcal{M}_{n,0});q) = \sum_{\substack{\lambda \vdash n \\ \lambda \text{ even}}} q^{\frac{n-\lambda_1}{2}} \cdot s_{\lambda}.$$

Corollary (Liu-Ma-Rhoades-Z.'25)

For n > 0 even, the Hilbert series of $R(\mathcal{M}_{n,0})$ is given by

$$\operatorname{Hilb}(R(\mathcal{M}_{n,0});q) = \sum_{w \in \mathcal{M}_{n,0}} q^{\frac{n-\operatorname{Ids}(w)}{2}}.$$

Basis?

The graded module structure of $R(\mathcal{M}_{n,a})$

Theorem (Liu-Ma-Rhoades-Z.'25)

Suppose $a \equiv n \mod 2$. The graded Frobenius image of $R(\mathcal{M}_{n,a})$ is given by

$$\operatorname{grFrob}(R(\mathcal{M}_{n,a});q) = \frac{(n-a)/2}{\sum_{d=0}^{(n-a)} \{s_d[s_2] \cdot s_{n-2d} - s_{d-1}[s_2] \cdot s_{n-2d+2}\}_{\lambda_1 \leq n-2d+a} \cdot q^d}$$

with the convention that $s_{-1} = 0$.

Hilbert series? Basis?

Open problems

Problem

Find a canonical linear basis for $R(\mathcal{M}_{n,a})$ when $a \equiv n \mod 2$.

Problem

Explicitly compute the Hilbert series $Hilb(R(\mathcal{M}_{n,a}); q)$ when $a \equiv n \mod 2$ and a > 1.

Problem

Show that both $R(\mathcal{M}_n)$ and $R(\mathcal{M}_{n,a})$ are \mathfrak{S}_n -log-concave.

Problem

Consider other cycle types or colored permutations.

Introduction Background Main results Open problems

Thank you very much for your attention!

References I

- Jasper M. Liu. Viennot shadows and graded module structure in colored permutation groups, 2024. URL https://arxiv.org/abs/2401.07850.
- Brendon Rhoades. Increasing subsequences, matrix loci and viennot shadows. Forum of Mathematics, Sigma, 12:e97, 2024. doi: $10.1017/\mathrm{fms}.2024.75$.
- C. Schensted. Longest increasing and decreasing subsequences. *Canadian Journal of Mathematics*, 13:179–191, 1961. doi: 10.4153/CJM-1961-015-3.