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Vector bundles on elliptic curves

k: algebraically closed field
C : elliptic curve over k with identity e ∈ C(k)
For x ∈ C(k), let Px = O(x − e)
Letting x 7→ Px gives an isomorphism C(k) ∼= Pic0(C)

Question
What about vector bundles of higher rank?
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Atiyah’s classification

Theorem (Atiyah ’57)
Let E(r , d) be the set of indecomposable vector bundles on C of
rank r and degree d .
(1) There is a canonical bijection C(k) ∼= E(r , d), x 7→ Er ,d ,x such
that E1,0,x = Px .
(2) If gcd(r , d) = 1, then Er ,d ,x is simple. Moreover, for any
n ∈ Z+, Enr ,nd ,x is an iterated extension of Er ,d ,x .
(3) Suppose k has characteristic 0, and write En = En,0,e . Then

En ⊗ Em =
min{m,n}⊕

k=1
Em+n+1−2k .
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The method of G. Hein and D. Ploog

In 2005, G. Hein and D. Ploog give a new proof of Atiyah’s
theorem with the help of two ideas:

Fourier–Mukai transforms
Slope stability
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Fourier–Mukai tranforms

The general mechanism of Fourier–Mukai transforms is the
following. We denote by Db(X ) the bounded derived category of
coherent sheaves of a variety X .

Definition
Let X , Y be smooth projective varieties and K ∈ Db(X × Y ). The
Fourier–Mukai transform with kernel K is the functor

FMK : Db(X ) → Db(Y ), F 7→ RpY ∗(p∗
X F ⊗L K),

where pX : X × Y → X and pY : X × Y → Y are canonical
projections.
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Fourier–Mukai transforms

Take X = Y = C our elliptic curve, and F = P ∈ Pic0(C × C) be
the Poincaré bundle: get an endofunctor FM = FMP of Db(C).

Proposition
(1) FM is an equivalence, and FM2 = ι∗[−1], where ι : C → C is
the inverse map.
(2) For x ∈ C(k), let kx be the skyscraper sheaf at x . Then
FM(kx ) = Px and FM(Px ) = k−x [−1].

Problem
If E is a vector bundle, then FM(E) ∈ Db(C) is not a vector
bundle in general: it might not even concentrate in one degree.

Luckily, things get good if we assume E to be semistable.
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Slope stability

Let E be a vector bundle on C with rank r and degree d . The
slope of E is µ(E) = d/r ∈ Q.

Definition
E is stable (semistable resp.) if for any nontrivial subbundle
0 ⊊ F ⊊ E , we have µ(F) < µ(E) (µ(F) ≤ µ(E), resp.).

Proposition
Indecomposable vector bundles on elliptic curves are semistable.

We don’t lose anything when restricting to semistable vector
bundles.
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Fourier–Mukai transform of semistable vector bundles

For µ ∈ Q, let Vectss(C)µ be the category of vector bundles of
slope µ.
Let Vectss(C)∞ = Coh(C)tor be the category of torsion coherent
sheaves.
Theorem
Let µ ∈ P1(Q) = Q ∪ {∞}. Let E ∈ Vectss(C)µ, then

FM(E) ∈
{

Vectss(C)−µ−1 , µ ∈ Q>0 ∪ {∞}
Vectss(C)−µ−1 [−1], µ ∈ Q≤0.
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Slope translation

Last theorem: FM restricts to an equivalence (modulo shifts)

Vectss(C)µ ≃ Vectss(C)−µ−1 .

On the other hand, there is an equivalence

Vectss(C)µ ≃ Vectss(C)µ+1, F 7→ F ⊗ O(e).

µ 7→ −µ−1 and µ 7→ µ + 1 generates the transitive action of
PSL2(Z) on P1(Q)! By checking relations, we obtain:

Corollary
There are canonical equivalences between all Vectss(C)µ.

This makes clear the structure of Vectss(C)µ, since Coh(C)tor is
easy.
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Convolution products

Now we turn to multiplicative structures.

Definition
Let p1, p2, m : C2 → C be the two projections and the
multiplication map, respectively. For F , G ∈ Db(C), their
convolution product is

F ⋆ G = Rm∗(p∗
1F ⊗L p∗

2G).

Proposition

FM(F ⋆ G) = FM(F) ⊗L FM(G).
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Calculation of convolution products

Let Fn = Oe/mn
e be the length n indecomposable torsion sheaf at

e, so that FM(Fn) = En = En,0,e . By the last proposition, (3) in
Atiyah’s theorem is equivalent to

Fn ⋆ Fm =
min{m,n}⊕

k=1
Fm+n+1−2k

To calculate Fn ⋆ Fm we can restrict to the formal neighborhood
of e.

Ôe inherits a formal group structure ∆ : Ôe → Ôe⊗̂Ôe

Fn is the Ôe-module Ôe/m̂n
e

p∗
1Fn ⊗L p∗

2Fm is the Ôe⊗̂Ôe-module Ôe/m̂n
e ⊗ Ôe/m̂m

e

Fn ⋆ Fm is Ôe/m̂n
e ⊗ Ôe/m̂m

e with Ôe-module structure
induced by ∆
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Formal group laws

Choosing a coordinate Ôe ∼= k[[x ]], we arrive at the following
question:

Question
Given a formal group law F (x , y) ∈ k[[x , y ]], what is
k[x , y ]/(xn, ym) as a k[F (x , y)]-module?

Theorem
(1) Every formal group law in characteristic 0 is isomorphic to the
additive formal group law F (x , y) = x + y .
(2) (Lazard ’55) Formal group laws over algebraically closed fields
of characteristic p is classified by their heights, which take value in
Z+ ∪ {∞}.
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Characteristic 0 case

In characteristic 0, we want to know the structure of
k[x , y ]/(xn, ym) as a k[x + y ]-module. Write n instead of Fn.

Method 1:
Direct calculation shows 2 ⋆ n = (n − 1) ⊕ (n + 1)
Using (2 ⋆ n) ⋆ m = 2 ⋆ (n ⋆ m), induction gives the desired
formula for n ⋆ m

Method 2 (thanks to inspections of Liang Xiao and Kaiyuan Gu):
Regard k[x ]/(xn) as an irreducible sl2-representation, so that
the raising operator acts as multiplication by x
In the tensor product representation k[x , y ]/(xn, ym), the
raising operator acts as multiplication by x + y
Use the tensor product formula of sl2-representation
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Characteristic p case

Algorithm (Conjectured):
1 The answer does NOT depend on the formal group
2 If m ≤ pk and m ⋆ n =

⊕m
i=1 ai (ai can be 0), then

m ⋆ (n + pk) =
⊕m

i=1(ai + pk)
3 If m, n ≤ pk and m ⋆ n =

⊕m
i=1 ai (ai can be 0), then

m ⋆ (pk − n) =
⊕m

i=1(pk − ai)
4 Step 2 implies: if m ≤ n ≤ pk and m + n > pk , then m ⋆ n =

a1 ⊕ · · · ⊕ apk−n ⊕ (pk)⊕(m+n−pk) (0 < a1, ..., apk−n < pk)
5 By step 1,2 may assume pk < m ≤ n ≤ pk+1

2

6 If k = 0 then m ⋆ n =
⊕min{m,n}

i=1 (m + n + 1 − 2i)
7 Write m = q · pk + m0 and n = q′ · pk + n0, with

0 ≤ m0, n0 < pk
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Characteristic p case

If m0 ≤ n0, write m0 ⋆ n0 =
(⊕m0−r

i=1 ai
)

⊕ (pk)⊕r

(0 < a1, ..., am0−r < pk , so that r = max{0, m0 + n0 − pk}), then

m ⋆ n =
q⊕

j=0

m0−r⊕
i=1

(
ai + (2j + q′ − q)pk

)

⊕
q−1⊕
j=0

(
(2j + q′ − q + 1)pk

)⊕|pk−m0−n0|
⊕

(
(q′ + q + 1)pk

)⊕r

⊕
q−1⊕
j=0

m0−r⊕
i=1

(
(2j + q′ − q + 2)pk − ai

)

⊕
q−1⊕
j=0

(
(2j + q′ − q + 2)pk

)⊕(n0−m0)
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Characteristic p case

If m0 > n0, write m0 ⋆ n0 =
(⊕n0−r

i=1 ai
)

⊕ (pk)⊕r

(0 < a1, ..., an0−r < pk , so that r = max{0, m0 + n0 − pk}), then

m ⋆ n =
q⊕

j=0

(
(2j + q′ − q)pk

)⊕(m0−n0)

⊕
q⊕

j=0

n0−r⊕
i=1

(
ai + (2j + q′ − q)pk

)

⊕
q−1⊕
j=0

(
(2j + q′ − q + 1)pk

)⊕|pk−m0−n0|
⊕

(
(q′ + q + 1)pk

)⊕r

⊕
q−1⊕
j=0

n0−r⊕
i=1

(
(2j + q′ − q + 2)pk − ai

)
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Thank you!

Kaiyi Chen FM Transforms and Vector Bundles on Elliptic Curves


